Do you want to publish a course? Click here

Investigating population dynamics of the Kumbh Mela through the lens of cell phone data

155   0   0.0 ( 0 )
 Added by Jukka-Pekka Onnela
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

The Kumbh is a religious Hindu festival that has been celebrated for centuries. The 2013 Kumbh Mela, a grander form of the annual Kumbh, was purportedly the largest gathering of people in human history. Many of the participants carried cell phones, making it possible for us to use a data-driven approach to document this magnificent festival. We used Call Detail Records (CDRs) from participants attending the event, a total of 390 million records, to investigate its population dynamics. We report here on some of our preliminary findings.



rate research

Read More

80 - Yerali Gandica 2018
In this work, we are interested in the inner-cultural background shaping broad peoples preferences. Our interest is also to track this human footprint, as it has the tendency to disappear due to the nowadays globalization. Given that language is a social construction, it is part of the historical reservoir, shaping the cultural (and hence collective) identity, then helping the community to archive accumulated knowledge about its culture and identity. We assume that the collective interest of a language-speaking community to document their events, people and any feature important for them, by the online encyclopedia Wikipedia, can act as a footprint of the whole groups collective identity. The analysis of the languages preferences into categories among several languages, could have also applications into the field of Multilingual Natural Language Processing (MNLP). We, then, report results about the number of edits, editors, and pages into categories, displayed by the several languages. Results are shown by several angles, and some extra measures complement the analysis.
Modelling efforts in opinion dynamics have to a large extent ignored that opinion exchange between individuals can also have an effect on how willing they are to express their opinion publicly. Here, we introduce a model of public opinion expression. Two groups of agents with different opinion on an issue interact with each other, changing the willingness to express their opinion according to whether they perceive themselves as part of the majority or minority opinion. We formulate the model as a multi-group majority game and investigate the Nash equilibria. We also provide a dynamical systems perspective: Using the reinforcement learning algorithm of $Q$-learning, we reduce the $N$-agent system in a mean-field approach to two dimensions which represent the two opinion groups. This two-dimensional system is analyzed in a comprehensive bifurcation analysis of its parameters. The model identifies social-structural conditions for public opinion predominance of different groups. Among other findings, we show under which circumstances a minority can dominate public discourse.
Art is the ultimate expression of human creativity that is deeply influenced by the philosophy and culture of the corresponding historical epoch. The quantitative analysis of art is therefore essential for better understanding human cultural evolution. Here we present a large-scale quantitative analysis of almost 140 thousand paintings, spanning nearly a millennium of art history. Based on the local spatial patterns in the images of these paintings, we estimate the permutation entropy and the statistical complexity of each painting. These measures map the degree of visual order of artworks into a scale of order-disorder and simplicity-complexity that locally reflects qualitative categories proposed by art historians. The dynamical behavior of these measures reveals a clear temporal evolution of art, marked by transitions that agree with the main historical periods of art. Our research shows that different artistic styles have a distinct average degree of entropy and complexity, thus allowing a hierarchical organization and clustering of styles according to these metrics. We have further verified that the identified groups correspond well with the textual content used to qualitatively describe the styles, and that the employed complexity-entropy measures can be used for an effective classification of artworks.
Today, 95% of the global population has 2G mobile phone coverage and the number of individuals who own a mobile phone is at an all time high. Mobile phones generate rich data on billions of people across different societal contexts and have in the last decade helped redefine how we do research and build tools to understand society. As such, mobile phone data has the potential to revolutionize how we tackle humanitarian problems, such as the many suffered by refugees all over the world. While promising, mobile phone data and the new computational approaches bring both opportunities and challenges. Mobile phone traces contain detailed information regarding peoples whereabouts, social life, and even financial standing. Therefore, developing and adopting strategies that open data up to the wider humanitarian and international development community for analysis and research while simultaneously protecting the privacy of individuals is of paramount importance. Here we outline the challenging situation of children on the move and actions UNICEF is pushing in helping displaced children and youth globally, and discuss opportunities where mobile phone data can be used. We identify three key challenges: data access, data and algorithmic bias, and operationalization of research, which need to be addressed if mobile phone data is to be successfully applied in humanitarian contexts.
The relationship between nature contact and mental well-being has received increasing attention in recent years. While a body of evidence has accumulated demonstrating a positive relationship between time in nature and mental well-being, there have been few studies comparing this relationship in different locations over long periods of time. In this study, we estimate a happiness benefit, the difference in expressed happiness between in- and out-of-park tweets, for the 25 largest cities in the US by population. People write happier words during park visits when compared with non-park user tweets collected around the same time. While the words people write are happier in parks on average and in most cities, we find considerable variation across cities. Tweets are happier in parks at all times of the day, week, and year, not just during the weekend or summer vacation. Across all cities, we find that the happiness benefit is highest in parks larger than 100 acres. Overall, our study suggests the happiness benefit associated with park visitation is on par with US holidays such as Thanksgiving and New Years Day.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا