VPG and EPG bend-numbers of Halin Graphs


Abstract in English

A piecewise linear curve in the plane made up of $k+1$ line segments, each of which is either horizontal or vertical, with consecutive segments being of different orientation is called a $k$-bend path. Given a graph $G$, a collection of $k$-bend paths in which each path corresponds to a vertex in $G$ and two paths have a common point if and only if the vertices corresponding to them are adjacent in $G$ is called a $B_k$-VPG representation of $G$. Similarly, a collection of $k$-bend paths each of which corresponds to a vertex in $G$ is called an $B_k$-EPG representation of $G$ if any two paths have a line segment of non-zero length in common if and only if their corresponding vertices are adjacent in $G$. The VPG bend-number $b_v(G)$ of a graph $G$ is the minimum $k$ such that $G$ has a $B_k$-VPG representation. Similarly, the EPG bend-number $b_e(G)$ of a graph $G$ is the minimum $k$ such that $G$ has a $B_k$-EPG representation. Halin graphs are the graphs formed by taking a tree with no degree $2$ vertex and then connecting its leaves to form a cycle in such a way that the graph has a planar embedding. We prove that if $G$ is a Halin graph then $b_v(G) leq 1$ and $b_e(G) leq 2$. These bounds are tight. In fact, we prove the stronger result that if $G$ is a planar graph formed by connecting the leaves of any tree to form a simple cycle, then it has a VPG-representation using only one type of 1-bend paths and an EPG-representation using only one type of 2-bend paths.

Download