We point out an inconsistency in perturbative QCD predictions previously used for dijet azimuthal decorrelations for azimuthal angles of $Deltaphi_{rm dijet} < 2pi/3$ between the two jets. We show how the inconsistency arises and how the calculations can be modified to provide more accurate results that exhibit a smaller scale dependence and give a better description of the data than the inconsistent results. We also explain how the quality of the predictions strongly depends on a perceivedly minor detail in the definition of the dijet phase space and give recommendations for future measurements.
We study inclusive dijet azimuthal decorrelations in proton-proton collisions at the CERN LHC invoking the hypothesis of parton Reggeization in t-channel exchanges at high energies. In the parton Reggeization approach, the main contribution to the azimuthal angle difference between the two most energetic jets is due to the Reggeon-Reggeon-Particle-Particle scattering, when the fusion of two Reggeized gluons into a pair of Yang-Mills gluons dominates. Using a high-energy factorization scheme with the Kimber-Martin-Ryskin unintegrated parton distribution functions and the Fadin-Lipatov effective vertices we obtain good agreement of our calculations with recent measurements by the ATLAS and CMS Collaborations at the CERN LHC.
We develop the first systematic theoretical approach to dijet asymmetries in hadron-hadron collisions based on the perturbative QCD (pQCD) expansion and the Sudakov resummation formalism. We find that the pQCD calculation at next-to-leading order is indispensable to describe the experimental data, while the Sudakov resummation formalism is vital near the end points where the pQCD expansion fails to converge due to the appearance of large Sudakov logarithms. Utilizing our resummation improved pQCD approach, we obtain good agreement with the most up-to-date fully corrected ATLAS data on dijet asymmetry in $pp$ collisions. Combining with the BDMPS jet energy loss formalism, we extract the value of jet transport coefficient $hat{q}_0 sim 2$-$6~textrm{GeV}^2/textrm{fm}$ for the quark-gluon-plasma created in $PbPb$ collisions at 2.76A TeV. This work paves the way for a more complete and deeper understanding of the properties of strongly-coupled QCD medium via the studies of dijet asymmetries in relativistic heavy-ion collisions.
The development of techniques for identifying hadronic signals from the overwhelming multi-jet backgrounds is an important part of the Large Hadron Collider (LHC) program. Of prime importance are resonances decaying into a pair of partons, such as the Higgs and $rm W$/$rm Z$ bosons, as well as hypothetical new particles. We present a simple observable to help discriminate a dijet resonance from background that is effective even when the decaying resonance is not strongly boosted. We find consistent performance of the observable over a variety of processes and degree of boosts, and show that it leads to a reduction of the background by a factor of $3-5$ relative to signal at the price of $10-20%$ signal efficiency. This approach represents a significant increase in sensitivity for Standard Model (SM) measurements and searches for new physics that are dominated by systematic uncertainties, which is true of many analyses involving jets - particularly in the high-luminosity running of the LHC.
We present a next-to-leading order QCD calculation of inclusive dijet photoproduction in ultraperipheral Pb-Pb collisions at the LHC and show that the results agree very well with various kinematic distributions measured by the ATLAS collaboration. The effect of including these data in nCTEQ or EPPS16 nuclear parton density functions (nPDFs) is then studied using the Bayesian reweighting technique. For an assumed total error of 5% on the final data, its inclusion would lead to a significant reduction of the nPDF uncertainties of up to a factor of two at small values of the parton momentum fraction. As an outlook, we discuss future analyes of diffractive nPDFs, which are so far completely unknown.
Quark-antiquark pair (or dijet) production at the electron-ion collider (EIC) has been argued to be one of most important processes that allowing to access the Weizsacker-Williams (WW) gluon distributions at small $x$ limit. Within the framework of Color Glass Condensate (CGC) effective field theory (EFT), we calculated the dijet cross sections and the azimuthal correlations by including the Sudakov resummations, numerical results shown that the back-to-back correlations are significantly suppressed when the Sudakov resummations are taken into account. In addition, by using the solutions of running-coupling Balitsky-Kovchegov (rcBK) equation, the unpolarized and linearly polarized WW gluon distributions both in coordinate and momentum space are presented.