Do you want to publish a course? Click here

APAC: Augmented PAttern Classification with Neural Networks

127   0   0.0 ( 0 )
 Added by Ikuro Sato
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

Deep neural networks have been exhibiting splendid accuracies in many of visual pattern classification problems. Many of the state-of-the-art methods employ a technique known as data augmentation at the training stage. This paper addresses an issue of decision rule for classifiers trained with augmented data. Our method is named as APAC: the Augmented PAttern Classification, which is a way of classification using the optimal decision rule for augmented data learning. Discussion of methods of data augmentation is not our primary focus. We show clear evidences that APAC gives far better generalization performance than the traditional way of class prediction in several experiments. Our convolutional neural network model with APAC achieved a state-of-the-art accuracy on the MNIST dataset among non-ensemble classifiers. Even our multilayer perceptron model beats some of the convolutional models with recently invented stochastic regularization techniques on the CIFAR-10 dataset.



rate research

Read More

103 - Bo Zhang , Li Niu , Liqing Zhang 2021
Image composition assessment is crucial in aesthetic assessment, which aims to assess the overall composition quality of a given image. However, to the best of our knowledge, there is neither dataset nor method specifically proposed for this task. In this paper, we contribute the first composition assessment dataset CADB with composition scores for each image provided by multiple professional raters. Besides, we propose a composition assessment network SAMP-Net with a novel Saliency-Augmented Multi-pattern Pooling (SAMP) module, which analyses visual layout from the perspectives of multiple composition patterns. We also leverage composition-relevant attributes to further boost the performance, and extend Earth Movers Distance (EMD) loss to weighted EMD loss to eliminate the content bias. The experimental results show that our SAMP-Net can perform more favorably than previous aesthetic assessment approaches and offer constructive composition suggestions.
Entanglement is a physical phenomenon, which has fueled recent successes of quantum algorithms. Although quantum neural networks (QNNs) have shown promising results in solving simple machine learning tasks recently, for the time being, the effect of entanglement in QNNs and the behavior of QNNs in binary pattern classification are still underexplored. In this work, we provide some theoretical insight into the properties of QNNs by presenting and analyzing a new form of invariance embedded in QNNs for both quantum binary classification and quantum representation learning, which we term negational symmetry. Given a quantum binary signal and its negational counterpart where a bitwise NOT operation is applied to each quantum bit of the binary signal, a QNN outputs the same logits. That is to say, QNNs cannot differentiate a quantum binary signal and its negational counterpart in a binary classification task. We further empirically evaluate the negational symmetry of QNNs in binary pattern classification tasks using Googles quantum computing framework. The theoretical and experimental results suggest that negational symmetry is a fundamental property of QNNs, which is not shared by classical models. Our findings also imply that negational symmetry is a double-edged sword in practical quantum applications.
Early diagnosis of interstitial lung diseases is crucial for their treatment, but even experienced physicians find it difficult, as their clinical manifestations are similar. In order to assist with the diagnosis, computer-aided diagnosis (CAD) systems have been developed. These commonly rely on a fixed scale classifier that scans CT images, recognizes textural lung patterns and generates a map of pathologies. In a previous study, we proposed a method for classifying lung tissue patterns using a deep convolutional neural network (CNN), with an architecture designed for the specific problem. In this study, we present an improved method for training the proposed network by transferring knowledge from the similar domain of general texture classification. Six publicly available texture databases are used to pretrain networks with the proposed architecture, which are then fine-tuned on the lung tissue data. The resulting CNNs are combined in an ensemble and their fused knowledge is compressed back to a network with the original architecture. The proposed approach resulted in an absolute increase of about 2% in the performance of the proposed CNN. The results demonstrate the potential of transfer learning in the field of medical image analysis, indicate the textural nature of the problem and show that the method used for training a network can be as important as designing its architecture.
The goal of this paper is to analyze the geometric properties of deep neural network classifiers in the input space. We specifically study the topology of classification regions created by deep networks, as well as their associated decision boundary. Through a systematic empirical investigation, we show that state-of-the-art deep nets learn connected classification regions, and that the decision boundary in the vicinity of datapoints is flat along most directions. We further draw an essential connection between two seemingly unrelated properties of deep networks: their sensitivity to additive perturbations in the inputs, and the curvature of their decision boundary. The directions where the decision boundary is curved in fact remarkably characterize the directions to which the classifier is the most vulnerable. We finally leverage a fundamental asymmetry in the curvature of the decision boundary of deep nets, and propose a method to discriminate between original images, and images perturbed with small adversarial examples. We show the effectiveness of this purely geometric approach for detecting small adversarial perturbations in images, and for recovering the labels of perturbed images.
In this paper we propose a new computational method for designing optimal regulators for high-dimensional nonlinear systems. The proposed approach leverages physics-informed machine learning to solve high-dimensional Hamilton-Jacobi-Bellman equations arising in optimal feedback control. Concretely, we augment linear quadratic regulators with neural networks to handle nonlinearities. We train the augmented models on data generated without discretizing the state space, enabling application to high-dimensional problems. We use the proposed method to design a candidate optimal regulator for an unstable Burgers equation, and through this example, demonstrate improved robustness and accuracy compared to existing neural network formulations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا