Do you want to publish a course? Click here

Trapping in irradiated p-on-n silicon sensors at fluences anticipated at the HL-LHC outer tracker

170   0   0.0 ( 0 )
 Added by Thomas Poehlsen
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The degradation of signal in silicon sensors is studied under conditions expected at the CERN High-Luminosity LHC. 200 $mu$m thick n-type silicon sensors are irradiated with protons of different energies to fluences of up to $3 cdot 10^{15}$ neq/cm$^2$. Pulsed red laser light with a wavelength of 672 nm is used to generate electron-hole pairs in the sensors. The induced signals are used to determine the charge collection efficiencies separately for electrons and holes drifting through the sensor. The effective trapping rates are extracted by comparing the results to simulation. The electric field is simulated using Synopsys device simulation assuming two effective defects. The generation and drift of charge carriers are simulated in an independent simulation based on PixelAV. The effective trapping rates are determined from the measured charge collection efficiencies and the simulated and measured time-resolved current pulses are compared. The effective trapping rates determined for both electrons and holes are about 50% smaller than those obtained using standard extrapolations of studies at low fluences and suggests an improved tracker performance over initial expectations.



rate research

Read More

159 - A. Ducourthial 2018
The tracking detector of ATLAS, one of the experiments at the Large Hadron Collider (LHC), will be upgraded in 2024-2026 to cope with the challenging environment conditions of the High Luminosity LHC (HL-LHC). The LPNHE, in collaboration with FBK and INFN, has produced 130~$mu$m thick $n-on-p$ silicon pixel sensors which can withstand the expected large particle fluences at HL- LHC, while delivering data at high rate with excellent hit efficiency. Such sensors were tested on beam before and after irradiation both at CERN-SPS and at DESY, and their performances are presented in this paper. Beam test data indicate that these detectors are suited for all the layers where planar sensors are foreseen in the future ATLAS tracker: hit-efficiency is greater than 97% for fluences $Phi lesssim 7times10^{15}rm{n_{eq}/cm^2}$ and module power consumption is within the specified limits. Moreover, at a fluence $Phi = 1.3times10^{16}rm{n_{eq}/cm^2}$, hit-efficiency is still as high as 88% and charge collection efficiency is about 30%.
Silicon pixel modules employing n-in-p planar sensors with an active thickness of 200 $mu$m, produced at CiS, and 100-200 $mu$m thin active/slim edge sensor devices, produced at VTT in Finland have been interconnected to ATLAS FE-I3 and FE-I4 read-out chips. The thin sensors are designed for high energy physics collider experiments to ensure radiation hardness at high fluences. Moreover, the active edge technology of the VTT production maximizes the sensitive region of the assembly, allowing for a reduced overlap of the modules in the pixel layer close to the beam pipe. The CiS production includes also four chip sensors according to the module geometry planned for the outer layers of the upgraded ATLAS pixel detector to be operated at the HL-LHC. The modules have been characterized using radioactive sources in the laboratory and with high precision measurements at beam tests to investigate the hit efficiency and charge collection properties at different bias voltages and particle incidence angles. The performance of the different sensor thicknesses and edge designs are compared before and after irradiation up to a fluence of $1.4times10^{16}n_{eq}/cm^{2}$.
468 - J. Lange , S. Grinstein , M. Manna 2017
A new generation of 3D silicon pixel detectors with a small pixel size of 50$times$50 and 25$times$100 $mu$m$^{2}$ is being developed for the HL-LHC tracker upgrades. The radiation hardness of such detectors was studied in beam tests after irradiation to HL-LHC fluences up to $1.4times10^{16}$ n$_{mathrm{eq}}$/cm$^2$. At this fluence, an operation voltage of only 100 V is needed to achieve 97% hit efficiency, with a power dissipation of 13 mW/cm$^2$ at -25$^{circ}$C, considerably lower than for previous 3D sensor generations and planar sensors.
The R&D activity presented is focused on the development of new modules for the upgrade of the ATLAS pixel system at the High Luminosity LHC (HL-LHC). The performance after irradiation of n-in-p pixel sensors of different active thicknesses is studied, together with an investigation of a novel interconnection technique offered by the Fraunhofer Institute EMFT in Munich, the Solid-Liquid-InterDiffusion (SLID), which is an alternative to the standard solder bump-bonding. The pixel modules are based on thin n-in-p sensors, with an active thickness of 75 um or 150 um, produced at the MPI Semiconductor Laboratory (MPI HLL) and on 100 um thick sensors with active edges, fabricated at VTT, Finland. Hit efficiencies are derived from beam test data for thin devices irradiated up to a fluence of 4e15 neq/cm^2. For the active edge devices, the charge collection properties of the edge pixels before irradiation is discussed in detail, with respect to the inner ones, using measurements with radioactive sources. Beyond the active edge sensors, an additional ingredient needed to design four side buttable modules is the possibility of moving the wire bonding area from the chip surface facing the sensor to the backside, avoiding the implementation of the cantilever extruding beyond the sensor area. The feasibility of this process is under investigation with the FE-I3 SLID modules, where Inter Chip Vias are etched, employing an EMFT technology, with a cross section of 3 um x 10 um, at the positions of the original wire bonding pads.
Thin planar pixel modules are promising candidates to instrument the inner layers of the new ATLAS pixel detector for HL-LHC, thanks to the reduced contribution to the material budget and their high charge collection efficiency after irradiation. 100-200 $mu$m thick sensors, interconnected to FE-I4 read-out chips, have been characterized with radioactive sources and beam tests at the CERN-SPS and DESY. The results of these measurements are reported for devices before and after irradiation up to a fluence of $14times10^{15}$ n$_{eq}$/cm$^2$. The charge collection and tracking efficiency of the different sensor thicknesses are compared. The outlook for future planar pixel sensor production is discussed, with a focus on sensor design with the pixel pitches (50x50 and 25x100 $mu$m$^2$) foreseen for the RD53 Collaboration read-out chip in 65 nm CMOS technology. An optimization of the biasing structures in the pixel cells is required to avoid the hit efficiency loss presently observed in the punch-through region after irradiation. For this purpose the performance of different layouts have been compared in FE-I4 compatible sensors at various fluence levels by using beam test data. Highly segmented sensors will represent a challenge for the tracking in the forward region of the pixel system at HL-LHC. In order to reproduce the performance of 50x50 $mu$m$^2$ pixels at high pseudo-rapidity values, FE-I4 compatible planar pixel sensors have been studied before and after irradiation in beam tests at high incidence angle (80$^circ$) with respect to the short pixel direction. Results on cluster shapes, charge collection and hit efficiency will be shown.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا