No Arabic abstract
The major problem of user registration, mostly text base password, is well known. In the login user be inclined to select simple passwords which is frequently in mind that are straightforward for attackers to guess, difficult machine created password mostly complicated to user take in mind. User authenticate password using cued click points and Persuasive Cued Click Points graphical password scheme which includes usability and security evaluations. This paper includes the persuasion to secure user authentication & graphical password using cued click-points so that users select more random or more difficult to guess the passwords. In click-based graphical passwords, image or video frame that provide database to load the image, and then store all information into database. Mainly passwords are composed of strings which have letters as well as digits. Example is alpha-numeric type letters and digits.
Text-based password schemes have inherent security and usability problems, leading to the development of graphical password schemes. However, most of these alternate schemes are vulnerable to spyware attacks. We propose a new scheme, using CAPTCHA (Completely Automated Public Turing tests to tell Computers and Humans Apart) that retaining the advantages of graphical password schemes, while simultaneously raising the cost of adversaries by orders of magnitude. Furthermore, some primary experiments are conducted and the results indicate that the usability should be improved in the future work.
Over the past several years, the electrocardiogram (ECG) has been investigated for its uniqueness and potential to discriminate between individuals. This paper discusses how this discriminatory information can help in continuous user authentication by a wearable chest strap which uses dry electrodes to obtain a single lead ECG signal. To the best of the authors knowledge, this is the first such work which deals with continuous authentication using a genuine wearable device as most prior works have either used medical equipment employing gel electrodes to obtain an ECG signal or have obtained an ECG signal through electrode positions that would not be feasible using a wearable device. Prior works have also mainly dealt with using the ECG signal for identification rather than verification, or dealt with using the ECG signal for discrete authentication. This paper presents a novel algorithm which uses QRS detection, weighted averaging, Discrete Cosine Transform (DCT), and a Support Vector Machine (SVM) classifier to determine whether the wearer of the device should be positively verified or not. Zero intrusion attempts were successful when tested on a database consisting of 33 subjects.
Shoulder-surfing is a known risk where an attacker can capture a password by direct observation or by recording the authentication session. Due to the visual interface, this problem has become exacerbated in graphical passwords. There have been some graphical schemes resistant or immune to shoulder-surfing, but they have significant usability drawbacks, usually in the time and effort to log in. In this paper, we propose and evaluate a new shoulder-surfing resistant scheme which has a desirable usability for PDAs. Our inspiration comes from the drawing input method in DAS and the association mnemonics in Story for sequence retrieval. The new scheme requires users to draw a curve across their password images orderly rather than click directly on them. The drawing input trick along with the complementary measures, such as erasing the drawing trace, displaying degraded images, and starting and ending with randomly designated images provide a good resistance to shouldersurfing. A preliminary user study showed that users were able to enter their passwords accurately and to remember them over time.
-Wireless body area network(WBAN) has shown great potential in improving healthcare quality not only for patients but also for medical staff. However, security and privacy are still an important issue in WBANs especially in multi-hop architectures. In this paper, we propose and present the design and the evaluation of a secure lightweight and energy efficient authentication scheme BANZKP based on an efficient cryptographic protocol, Zero Knowledge Proof (ZKP) and a commitment scheme. ZKP is used to confirm the identify of the sensor nodes, with small computational requirement, which is favorable for body sensors given their limited resources, while the commitment scheme is used to deal with replay attacks and hence the injection attacks by committing a message and revealing the key later. Our scheme reduces the memory requirement by 56.13 % compared to TinyZKP [13], the comparable alternative so far for Body Area Networks, and uses 10 % less energy.
Graphical passwords have been demonstrated to be the possible alternatives to traditional alphanumeric passwords. However, they still tend to follow predictable patterns that are easier to attack. The crux of the problem is users memory limitations. Users are the weakest link in password authentication mechanism. It shows that baroque music has positive effects on human memorizing and learning. We introduce baroque music to the PassPoints graphical password scheme and conduct a laboratory study in this paper. Results shown that there is no statistic difference between the music group and the control group without music in short-term recall experiments, both had high recall success rates. But in long-term recall, the music group performed significantly better. We also found that the music group tended to set significantly more complicated passwords, which are usually more resistant to dictionary and other guess attacks. But compared with the control group, the music group took more time to log in both in short-term and long-term tests. Besides, it appears that background music does not work in terms of hotspots.