No Arabic abstract
The Large sky Area Multi-Object Spectroscopic Telescope (LAMOST) General Survey is a spectroscopic survey that will eventually cover approximately half of the celestial sphere and collect 10 million spectra of stars, galaxies and QSOs. Objects both in the pilot survey and the first year general survey are included in the LAMOST First Data Release (DR1). The pilot survey started in October 2011 and ended in June 2012, and the data have been released to the public as the LAMOST Pilot Data Release in August 2012. The general survey started in September 2012, and completed its first year of operation in June 2013. The LAMOST DR1 includes a total of 1202 plates containing 2,955,336 spectra, of which 1,790,879 spectra have observed signal-to-noise S/N >10. All data with S/N>2 are formally released as LAMOST DR1 under the LAMOST data policy. This data release contains a total of 2,204,696 spectra, of which 1,944,329 are stellar spectra, 12,082 are galaxy spectra and 5,017 are quasars. The DR1 includes not only spectra, but also three stellar catalogues with measured parameters: AFGK-type stars with high quality spectra (1,061,918 entries), A-type stars (100,073 entries), and M stars (121,522 entries). This paper introduces the survey design, the observational and instrumental limitations, data reduction and analysis, and some caveats. Description of the FITS structure of spectral files and parameter catalogues is also provided.
We present the first data release (DR1) of the SkyMapper Southern Survey, a hemispheric survey carried out with the SkyMapper Telescope at Siding Spring Observatory in Australia. Here, we present the survey strategy, data processing, catalogue construction and database schema. The DR1 dataset includes over 66,000 images from the Shallow Survey component, covering an area of 17,200 deg$^2$ in all six SkyMapper passbands $uvgriz$, while the full area covered by any passband exceeds 20,000 deg$^2$. The catalogues contain over 285 million unique astrophysical objects, complete to roughly 18 mag in all bands. We compare our $griz$ point-source photometry with PanSTARRS1 DR1 and note an RMS scatter of 2%. The internal reproducibility of SkyMapper photometry is on the order of 1%. Astrometric precision is better than 0.2 arcsec based on comparison with Gaia DR1. We describe the end-user database, through which data are presented to the world community, and provide some illustrative science queries.
The INvestigating Stellar Population In RElics is an on-going project targeting 52 ultra-compact massive galaxies at 0.1<z<0.5 with the X-Shooter@VLT spectrograph (XSH). These objects are the perfect candidates to be relics, massive red-nuggets formed at high-z (z>2) through a short and intense star formation burst, that evolved passively and undisturbed until the present-day. Relics provide a unique opportunity to study the mechanisms of star formation at high-z. In this paper, we present the first INSPIRE Data Release, comprising 19 systems with observations completed in 2020. We use the methods already presented in the INSPIRE Pilot, but revisiting the 1D spectral extraction. For these 19 systems, we obtain an estimate of the stellar velocity dispersion, fitting separately the two UVB and VIS XSH arms at their original resolution. We estimate [Mg/Fe] abundances via line-index strength and mass-weighted integrated stellar ages and metallicities with full spectral fitting on the combined spectrum. Ages are generally old, in agreement with the photometric ones, and metallicities are almost always super-solar, confirming the mass-metallicity relation. The [Mg/Fe] ratio is also larger than solar for the great majority of the galaxies, as expected. We find that 10 objects have formed more than 75% of their stellar mass (M*) within 3 Gyr from the Big Bang and classify them as relics. Among these, we identify 4 galaxies which had already fully assembled their M* by that time. They are therefore `extreme relics of the ancient Universe. The INSPIRE DR1 catalogue of 10 known relics to-date augment by a factor of 3.3 the total number of confirmed relics, also enlarging the redshift window. It is therefore the largest publicly available collection. Thanks to the larger number of systems, we can also better quantify the existence of a degree of relicness, already hinted at the Pilot Paper.
Winged radio sources are a small sub-class of extragalactic radio sources which display a pair of low surface brightness radio lobes, known as `wings aligned at a certain angle with the primary jets. Depending on the location of wings, these galaxies look like X or Z and are known as X-shaped Radio Galaxy (XRG) or Z-shaped Radio Galaxy (ZRG). We report the identification of 33 winged radio sources from the LOFAR Two-metre Sky Survey First Data Release (LoTSS DR1) out of which 21 sources are identified as X-shaped radio galaxies and 12 as Z-shaped radio galaxies. Optical counterparts are identified for 14 XRGs (67 per cent) and 12 ZRGs (100 per cent). We studied various physical parameters of these sources like spectral index, radio luminosity, and power. The radio spectrum of the majority of XRGs and ZRGs is steep ($alpha_{1400}^{144}>0.5$), which is typical of lobe dominated radio galaxies. The statistical studies are done on the relative size of the major and minor axes and the angle between the major axis and minor axis for XRGs.
We present the first data release of the Fornax Deep Survey (FDS), an imaging survey using using the wide-field imager OmegaCAM mounted on the VST in the SDSS u, g, r, and i-bands covering the Fornax Galaxy Cluster and the infalling Fornax A Group. FDS is a joint project between NOVA (previously called FOCUS - PI: R. F. Peletier) and INAF (as part of VEGAS - PIs: M. Capaccioli and E. Iodice). With exposure times of about 9 hours over an area of ~28 square degrees, this survey is a legacy dataset for studies of members of the Fornax Galaxy Cluster and the infalling Fornax A Group down to a surface brightness limit of ~28 mag/arcsec^2 (1-sigma surface brightness over a 1 arcsecond^2 area) and opens a new parameter regime to investigate the role of the cluster environment in shaping the properties of its galaxy population. After the Virgo cluster,Fornax is the second nearest galaxy cluster to us, and with its different mass and evolutionary state, it provides a valuable comparison that makes it possible to understand the various evolutionary effects on galaxies and galaxy clusters. Details about the survey can be found in A. Venhola, R. F. Peletier, E. Laurikainen et al., 2018, A&A 620, 165. In this release, 181 Gb of (compressed) fits files reduced using the system are present. Catalogues with the complete sample of sources including dwarf galaxies part of the cluster, globular clusters, and background galaxies will be provided in forthcoming releases. The data products are available via the ESO Science Portal at https://archive.eso.org/scienceportal/home?publ_date=2020-08-26
The Beijing-Arizona Sky Survey (BASS) is a wide and deep imaging survey to cover a 5400 deg$^2$ area in the Northern Galactic Cap with the 2.3m Bok telescope using two filters ($g$ and $r$ bands). The Mosaic $z$-band Legacy Survey (MzLS) covers the same area in $z$ band with the 4m Mayall telescope. These two surveys will be used for spectroscopic targeting of the Dark Energy Spectroscopic Instrument (DESI). The BASS survey observations were completed in 2019 March. This paper describes the third data release (DR3) of BASS, which contains the photometric data from all BASS and MzLS observations between 2015 January and 2019 March. The median astrometric precision relative to {it Gaia} positions is about 17 mas and the median photometric offset relative to the PanSTARRS1 photometry is within 5 mmag. The median $5sigma$ AB magnitude depths for point sources are 24.2, 23.6, and 23.0 mag for $g$, $r$, and $z$ bands, respectively. The photometric depth within the survey area is highly homogeneous, with the difference between the 20% and 80% depth less than 0.3 mag. The DR3 data, including raw data, calibrated single-epoch images, single-epoch photometric catalogs, stacked images, and co-added photometric catalogs, are publicly accessible at url{http://batc.bao.ac.cn/BASS/doku.php?id=datarelease:home}.