Do you want to publish a course? Click here

Star-formation properties of Hickson Compact Groups based on deep H{alpha} imaging

145   0   0.0 ( 0 )
 Added by Paul Eigenthaler
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present deep H{alpha} imaging of seven Hickson Compact Groups (HCGs) using the 4.1m Southern Astrophysics Research (SOAR) Telescope. The high spatial resolution of the observations allow us to study both the integrated star-formation properties of the main galaxies as well as the 2D distribution of star-forming knots in the faint tidal arms that form during interactions between the individual galaxies. We derive star-formation rates and stellar masses for group members and discuss their position relative to the main sequence of star-forming galaxies. Despite the existence of tidal features within the galaxy groups, we do not find any indication for enhanced star-formation in the selected sample of HCGs. We study azimuthally averaged H{alpha} profiles of the galaxy disks and compare them with the g and r surface-brightness profiles. We do not find any truncated galaxy disks but reveal that more massive galaxies show a higher light concentration in H{alpha} than less massive ones. We also see that galaxies that show a high light concentration in r, show a systematic higher light concentration in H{alpha}. TDG candidates have been previously detected in R-band images for 2 groups in our sample but we find that most of them are likely background objects as they do not show any emission in H{alpha}. We present a new tidal dwarf galaxy (TDG) candidate at the tip of the tidal tail in HCG 91.



rate research

Read More

152 - P. Tzanavaris 2010
We present Swift UVOT (1600-3000A) 3-band photometry for 41 galaxies in 11 nearby (<4500km/s) Hickson Compact Groups (HCGs) of galaxies. We use the uvw2-band (2000A) to estimate the dust-unobscured component, SFR_UV, of the total star-formation rate, SFR_T. We use Spitzer MIPS 24-micron photometry to estimate SFR_IR, the dust-obscured component of SFR_T. We obtain SFR_T=SFR_UV+SFR_IR. Using 2MASS K_s band based stellar mass, M*, estimates, we calculate specific SFRs, SSFR=SFR_T/M*. SSFR values show a clear and significant bimodality, with a gap between low (<~3.2x10^-11 / yr) and high SSFR (>~1.2x10^-10 / yr) systems. All galaxies with MIR activity index a_IRAC <= 0 (>0) are in the high- (low-) SSFR locus, as expected if high levels of star-formation power MIR emission from polycyclic aromatic hydrocarbon molecules and a hot dust continuum. All elliptical/S0 galaxies are in the low-SSFR locus, while 22 out of 24 spirals/irregulars are in the high-SSFR locus, with two borderline cases. We divide our sample into three subsamples (I, II and III) according to decreasing HI-richness of the parent galaxy group to which a galaxy belongs. Consistent with the SSFR and a_IRAC bimodality, 12 out of 15 type-I (11 out of 12 type-III) galaxies are in the high- (low-) SSFR locus, while type II galaxies span almost the full range of SSFR values. Unlike HCG galaxies, galaxies in a comparison quiescent SINGS sub-sample are continuously distributed both in SSFR and a_IRAC. Any uncertainties can only further enhance the SSFR bimodality. These results suggest that an environment characterized by high galaxy number-densities and low galaxy velocity-dispersions, such as the one found in compact groups, plays a key role in accelerating galaxy evolution by enhancing star-formation processes in galaxies and favoring a fast transition to quiescence.(abridged)
235 - C. Da Rocha 2010
The formation of ultra-compact dwarf galaxies (UCDs) is believed to be interaction driven, and UCDs are abundant in the cores of galaxy clusters, environments that mark the end-point of galaxy evolution. Nothing is known about the properties of UCDs in compact groups of galaxies, environments where most of galaxy evolution and interaction is believed to occur and where UCDs in intermediate state of evolution may be expected. The main goal of this study is to detect and characterize, for the first time, the UCD population of compact groups. For that, 2 groups in different evolutionary stages, HCG 22 and HCG 90, were targeted with VLT/FORS2/MXU. We detect 16 and 5 objects belonging to HCG 22 and HCG 90, respectively, covering the magnitude range -10.0 > M_R > -11.5 mag. Their colours are consistent with old ages covering a broad range in metallicities. Photometric mass estimates put 4 objects in HCG 90 and 9 in HCG 22 in the mass range of UCDs (>2x10^6 M_Sun) for an assumed age of 12 Gyr. These UCDs are on average 2-3 times larger than typical Galactic GCs, covering a range of 2 >~ r_h >~ 21 pc. The UCDs in HCG 22 are more concentrated around the central galaxy than in HCG 90, at the 99% confidence level. They cover a broad range in [alpha/Fe] abundances from sub- to super-solar. The spectra of 3 UCDs show tentative evidence for intermediate age stellar populations. We calculate the specific frequency (S_N) of UCDs for both groups, finding that HCG 22 has about three times higher S_N than HCG 90. The ensemble properties of the detected UCDs supports 2 co-existing formation channels: a star cluster origin and an origin as tidally stripped dwarf nuclei. Our results imply that the UCDs detected in both groups do not, in their majority, originate from relatively recent galaxy interactions. Most of the detected UCDs have likely been brought into the group with their host galaxies.[abridged]
This study presents the mass distribution for a sample of 18 late-type galaxies in nine Hickson Compact Groups. We used rotation curves from high resolution 2D velocity fields of Fabry-Perot observations and J-band photometry from the 2MASS survey, in order to determine the dark halo and the visible matter distributions. The study compares two halo density profile, an isothermal core-like distribution and a cuspy one. We also compare their visible and dark matter distributions with those of galaxies belonging to cluster and field galaxies coming from two samples: 40 cluster galaxies of Barnes et al (2004) and 35 field galaxies of Spano et al. (2008). The central halo surface density is found to be constant with respect to the total absolute magnitude similar to what is found for the isolated galaxies. This suggests that the halo density is independent to galaxy type and environment. We have found that core-like density profiles fit better the rotation curves than cuspy-like ones. No major differences have been found between field, cluster and compact group galaxies with respect to their dark halo density profiles.
281 - T. Bitsakis 2014
We present a Herschel far-IR and sub-mm study of a sample of 120 galaxies in 28 Hickson Compact Groups. Fitting their UV to sub-mm spectral energy distributions with the model of da Cunha et al. (2008), we accurately estimate the dust masses, luminosities and temperatures of the individual galaxies. We find that nearly half of the late-type galaxies in dynamically old groups, those with more than 25% of early-type members and redder UV-optical colours, have also significantly lower dust-to-stellar mass ratios compared to those of actively star-forming galaxies of the same mass found both in HCGs and the field. Examining their dust-to-gas mass ratios we conclude that dust was stripped out of these systems as a result of the gravitational and hydrodynamic interactions, experienced due to previous encounters with other group members. About 40% of the early-type galaxies (mostly lenticulars), in dynamically old groups, display dust properties similar to those of the UV-optical red late-type galaxies. Given their stellar masses, star formation rates and UV-optical colours, we suggest that red late-type and dusty lenticular galaxies represent transition populations between blue star-forming disk galaxies and quiescent early-type ellipticals. [...ABRIDGED...] Our deep Herschel observations also allow us to detect the presence of diffuse cold intragroup dust in 4 HCGs. We also find that the fraction of 250micron emission which is located outside of the main bodies of the red late-type galaxies as well as of the dusty lenticulars is 15-20% of their integrated emission at this band. All these findings are consistent with an evolutionary scenario in which gas dissipation, shocks and turbulence in addition to tidal interactions, shape the evolution of galaxies in compact groups.
We present 21cm HI observations of four Hickson Compact Groups with evidence for a substantial intragroup medium using the Robert C. Byrd Green Bank Telescope (GBT). By mapping H I emission in a region of 25$^{prime}times$25$^{prime}$ (140-650 kpc) surrounding each HCG, these observations provide better estimates of HI masses. In particular, we detected 65% more HI than that detected in the Karl G. Jansky Very Large Array (VLA) imaging of HCG92. We also identify if the diffuse gas has the same spatial distribution as the high-surface brightness (HSB) HI features detected in the VLA maps of these groups by comparing the HI strengths between the observed and modeled masses based on VLA maps. We found that the HI observed with the GBT to have a similar spatial distribution as the HSB structures in HCGs 31 and 68. Conversely, the observed HI distributions in HCGs44 and 92 were extended and showed significant offsets from the modeled masses. Most of the faint gas in HCG44 lies to the Northeast-Southwest region and in HCG 92 lies in the Northwest region of their respective groups. The spatial and dynamical similarities between the total (faint+HSB) and the HSB HI indicate that the faint gas is of tidal origin. We found that the gas will survive ionization by the cosmic UV background and the escaping ionizing photons from the star forming regions and stay primarily neutral for at least 500 Myrs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا