Do you want to publish a course? Click here

Classical Liquids in Fractal Dimension

149   0   0.0 ( 0 )
 Added by Marco Heinen
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We introduce fractal liquids by generalizing classical liquids of integer dimensions $d = 1, 2, 3$ to a fractal dimension $d_f$. The particles composing the liquid are fractal objects and their configuration space is also fractal, with the same non-integer dimension. Realizations of our generic model system include microphase separated binary liquids in porous media, and highly branched liquid droplets confined to a fractal polymer backbone in a gel. Here we study the thermodynamics and pair correlations of fractal liquids by computer simulation and semi-analytical statistical mechanics. Our results are based on a model where fractal hard spheres move on a near-critical percolating lattice cluster. The predictions of the fractal Percus-Yevick liquid integral equation compare well with our simulation results.



rate research

Read More

We construct models hosting classical fractal spin liquids on two realistic three-dimensional (3D) lattices of corner-sharing triangles: trillium and hyperhyperkagome (HHK). Both models involve the same form of three-spin Ising interactions on triangular plaquettes as the Newman-Moore (NM) model on the 2D triangular lattice. However, in contrast to the NM model and its 3D generalizations, their degenerate ground states and low-lying excitations cannot be described in terms of scalar cellular automata (CA), because the corresponding fractal structures lack a simplifying algebraic property, often termed the Freshmans dream. By identifying a link to matrix CAs -- that makes essential use of the crystallographic structure -- we show that both models exhibit fractal symmetries of a distinct class to the NM-type models. We devise a procedure to explicitly construct low-energy excitations consisting of finite sets of immobile defects or fractons, by flipping arbitrarily large self-similar subsets of spins, whose fractal dimensions we compute analytically. We show that these excitations are associated with energetic barriers which increase logarithmically with system size, leading to fragile glassy dynamics, whose existence we confirm via classical Monte Carlo simulations. We also discuss consequences for spontaneous fractal symmetry breaking when quantum fluctuations are introduced by a transverse magnetic field, and propose multi-spin correlation function diagnostics for such transitions. Our findings suggest that matrix CAs may provide a fruitful route to identifying fractal symmetries and fracton-like behaviour in lattice models, with possible implications for the study of fracton topological order.
63 - T. Keyes , J. Chowdhary 2001
The mechanism of diffusion in supercooled liquids is investigated from the potential energy landscape point of view, with emphasis on the crossover from high- to low-T dynamics. Molecular dynamics simulations with a time dependent mapping to the associated local mininum or inherent structure (IS) are performed on unit-density Lennard-Jones (LJ). New dynamical quantities introduced include r2_{is}(t), the mean-square displacement (MSD) within a basin of attraction of an IS, R2(t), the MSD of the IS itself, and g_{loc}(t) the mean waiting time in a cooperative region. At intermediate T, r2_{is}(t) posesses an interval of linear t-dependence allowing calculation of an intrabasin diffusion constant D_{is}. Near T_{c} diffusion is intrabasin dominated with D = D_{is}. Below T_{c} the local waiting time tau_{loc} exceeds the time, tau_{pl}, needed for the system to explore the basin, indicating the action of barriers. The distinction between motion among the IS below T_{c} and saddle, or border dynamics above T_{c} is discussed.
160 - C. Rascon 2007
Comment on Liquids on Topologically Nanopatterned Surfaces by O. Gang et al, Phys. Rev. Lett. 95, 217801 (2005). See also an erratum published by O. Gang et al (Phys Rev Lett, to appear)
Glasses are solid materials whose constituent atoms are arranged in a disordered manner. The transition from a liquid to a glass remains one of the most poorly understood phenomena in condensed matter physics, and still no fully microscopic theory exists that can describe the dynamics of supercooled liquids in a quantitative manner over all relevant time scales. Here we present such a theoretical framework that yields near-quantitative accuracy for the time-dependent correlation functions of a supercooled system over a broad density range. Our approach requires only simple static structural information as input and is based entirely based on first principles. Owing to this first-principles nature, the framework offers a unique platform to study the relation between structure and dynamics in glass-forming matter, and paves the way towards a systematically correctable and ultimately fully quantitative theory of microscopic glassy dynamics.
236 - James F. Lutsko 2021
Classical density functional theory for finite temperatures is usually formulated in the grand-canonical ensemble where arbitrary variations of the local density are possible. However, in many cases the systems of interest are closed with respect to mass, e.g. canonical systems with fixed temperature and particle number. Although the tools of standard, grand-canonical density functional theory are often used in an ad hoc manner to study closed systems, their formulation directly in the canonical ensemble has so far not been known. In this work, the fundamental theorems underlying classical DFT are revisited and carefully compared in the two ensembles showing that there are only trivial formal differences. The practicality of DFT in the canonical ensemble is then illustrated by deriving the exact Helmholtz functional for several systems: the ideal gas, certain restricted geometries in arbitrary numbers of dimensions and finally a system of two hard-spheres in one dimension (hard rods) in a small cavity. Some remarkable similarities between the ensembles are apparent even for small systems with the latter showing strong echoes of the famous exact of result of Percus in the grand-canonical ensemble.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا