Do you want to publish a course? Click here

benchNGS : An approach to benchmark short reads alignment tools

216   0   0.0 ( 0 )
 Added by Tatiana Tatarinova
 Publication date 2015
  fields Biology
and research's language is English




Ask ChatGPT about the research

In the last decade a number of algorithms and associated software have been developed to align next generation sequencing (NGS) reads with relevant reference genomes. The accuracy of these programs may vary significantly, especially when the NGS reads are quite different from the available reference genome. We propose a benchmark to assess accuracy of short reads mapping based on the pre-computed global alignment of related genome sequences. In this paper we propose a benchmark to assess accuracy of the short reads mapping based on the pre-computed global alignment of closely related genome sequences. We outline the method and also present a short report of an experiment performed on five popular alignment tools based on the pairwise alignments of Escherichia coli O6 CFT073 genome with genomes of seven other bacteria.



rate research

Read More

RNA-seq has rapidly become the de facto technique to measure gene expression. However, the time required for analysis has not kept up with the pace of data generation. Here we introduce Sailfish, a novel computational method for quantifying the abundance of previously annotated RNA isoforms from RNA-seq data. Sailfish entirely avoids mapping reads, which is a time-consuming step in all current methods. Sailfish provides quantification estimates much faster than existing approaches (typically 20-times faster) without loss of accuracy.
We investigate usage of dynamic time warping (DTW) algorithm for aligning raw signal data from MinION sequencer. DTW is mostly using for fast alignment for selective sequencing to quickly determine whether a read comes from sequence of interest. We show that standard usage of DTW has low discriminative power mainly due to problem with accurate estimation of scaling parameters. We propose a simple variation of DTW algorithm, which does not suffer from scaling problems and has much higher discriminative power.
A major hindrance to studies of microbial diversity has been that the vast majority of microbes cannot be cultured in the laboratory and thus are not amenable to traditional methods of characterization. Environmental shotgun sequencing (ESS) overcomes this hurdle by sequencing the DNA from the organisms present in a microbial community. The interpretation of this metagenomic data can be greatly facilitated by associating every sequence read with its source organism. We report the development of CompostBin, a DNA composition-based algorithm for analyzing metagenomic sequence reads and distributing them into taxon-specific bins. Unlike previous methods that seek to bin assembled contigs and often require training on known reference genomes, CompostBin has the ability to accurately bin raw sequence reads without need for assembly or training. It applies principal component analysis to project the data into an informative lower-dimensional space, and then uses the normalized cut clustering algorithm on this filtered data set to classify sequences into taxon-specific bins. We demonstrate the algorithms accuracy on a variety of simulated data sets and on one metagenomic data set with known species assignments. CompostBin is a work in progress, with several refinements of the algorithm planned for the future.
Motivation: The MinION device by Oxford Nanopore is the first portable sequencing device. MinION is able to produce very long reads (reads over 100~kBp were reported), however it suffers from high sequencing error rate. In this paper, we show that the error rate can be reduced by improving the base calling process. Results: We present the first open-source DNA base caller for the MinION sequencing platform by Oxford Nanopore. By employing carefully crafted recurrent neural networks, our tool improves the base calling accuracy compared to the default base caller supplied by the manufacturer. This advance may further enhance applicability of MinION for genome sequencing and various clinical applications. Availability: DeepNano can be downloaded at http://compbio.fmph.uniba.sk/deepnano/. Contact: [email protected]
The genetic structure of human populations is extraordinarily complex and of fundamental importance to studies of anthropology, evolution, and medicine. As increasingly many individuals are of mixed origin, there is an unmet need for tools that can infer multiple origins. Misclassification of such individuals can lead to incorrect and costly misinterpretations of genomic data, primarily in disease studies and drug trials. We present an advanced tool to infer ancestry that can identify the biogeographic origins of highly mixed individuals. reAdmix is an online tool available at http://chcb.saban-chla.usc.edu/reAdmix/.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا