Do you want to publish a course? Click here

Discovery of a new group of double-periodic RR Lyrae stars in the OGLE-IV photometry

159   0   0.0 ( 0 )
 Added by Henryka Netzel
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the discovery of a new group of double-periodic RR Lyrae stars from the analysis of the OGLE-IV Galactic bulge photometry. In 11 stars identified in the OGLE catalog as first overtone pulsators (RRc stars) we detect additional longer period variability of low amplitude, in the mmag regime. One additional star of the same type is identified in a published analysis of the Kepler space photometry. The period ratio between the shorter first overtone period and a new, longer period lies in a narrow range around 0.686. Thus, the additional period is longer than the expected period of the undetected radial fundamental mode. The obvious conclusion that addition periodicity corresponds to a gravity or a mixed mode faces difficulties, however.



rate research

Read More

We analyse the OGLE-IV photometry of the first overtone and double-mode RR Lyrae stars (RRc/RRd) in the two fields towards the Galactic bulge observed with high cadence. In 27 per cent of RRc stars we find additional non-radial mode, with characteristic period ratio, P x /P 1O in (0.6, 0.64). It strongly corroborates the conclusion arising from the analysis of space photometry of RRc stars, that this form of pulsation must be common. In the Petersen diagram the stars form three sequences. In 20 stars we find two or three close secondary modes simultaneously. The additional modes are clearly non-stationary. Their amplitude and/or phase vary in time. As a result, the patterns observed in the frequency spectra of these stars may be very complex. In some stars the additional modes split into doublets, triplets or appear as a more complex bands of increased power. Subharmonics of additional modes are detected in 20 per cent of stars. They also display a complex structure. Including our previous study of the OGLE-III Galactic bulge data, we have discovered 260 RRc and 2 RRd stars with the additional non-radial mode, which is the largest sample of these stars so far. The additional mode is also detected in two Blazhko RRc stars, which shows that the modulation and additional non-radial mode are not exclusive.
Non-radial modes are excited in classical pulsators, both in Cepheids and in RR Lyrae stars. Firm evidence come from the first overtone pulsators, in which additional shorter period mode is detected with characteristic period ratio falling in between 0.60 and 0.65. In the case of first overtone Cepheids three separate sequences populated by nearly 200 stars are formed in the Petersen diagram, i.e. the diagram of period ratio versus longer period. In the case of first overtone RR Lyrae stars (RRc stars) situation is less clear. A dozen or so such stars are known which form a clump in the Petersen diagram without any obvious structure. Interestingly, all first overtone RR Lyrae stars for which precise space-borne photometry is available show the additional mode, which suggests that its excitation is common. Motivated by these results we searched for non-radial modes in the OGLE-III photometry of RRc stars from the Galactic bulge. We report the discovery of 147 stars, members of a new group of double-mode, radial-non-radial mode pulsators. They form a clear and tight sequence in the Petersen diagram, with period ratios clustering around 0.613 with a signature of possible second sequence with higher period ratio (0.631). The scatter in period ratios of the already known stars is explained as due to population effects. Judging from the results of space observations this still mysterious form of pulsation must be common among RRc stars and with our analysis of the OGLE data we just touch the tip of the iceberg.
We report the discovery of a new group of double-periodic stars in the OGLE Galactic bulge photometry. In 38 stars identified as fundamental mode RR~Lyrae and 4 classified as the first-overtone RR~Lyrae, we detected additional shorter periodicity. Periods of the dominant variability in the newly discovered group are $0.28<P_{rm D}<0.41$,days. Period ratios $(0.68 - 0.72)$ are smaller than the period ratios of the Galactic bulge RRd stars. The typical amplitude ratio (of the additional to the dominant periodicity) is 20,% for the stars identified as fundamental mode RR~Lyrae and 50,% for stars classified as the first-overtone RR~Lyrae. Ten stars from our sample exhibit equidistant peaks in the frequency spectrum, that suggest the Blazhko-type modulation of the main pulsation frequency and/or the additional periodicity. The Fourier coefficients $R_{mathrm{21}}$ and $R_{mathrm{31}}$ are one of the lowest among fundamental mode RR Lyrae stars, but among the highest for the first-overtone pulsators. For the phase Fourier coefficients $varphi_{mathrm{21}}$ and $varphi_{mathrm{31}}$, our stars lie in between RRab and RRc stars. Discussed stars were compared with the radial, linear pulsation models. Their position in the Petersen diagram cannot be reproduced assuming that two radial modes are excited and their physical parameters are similar to that characteristic for RR~Lyrae stars. The non-radial mode scenario also faces difficulties. We conclude that the dominant variability is most likely due to pulsation in the radial fundamental mode including stars classified as the first overtone mode pulsators. At this point, we cannot explain the nature of the additional periodicity. Even more, classification of the stars as RR~Lyrae should be treated as tentative.
75 - V. F. Braga 2016
New accurate and homogeneous optical UBVRI photometry has been obtained for variable stars in the Galactic globular $omega$ Cen (NGC 5139). We secured 8202 CCD images covering a time interval of 24 years and a sky area of 84x48 arcmin. The current data were complemented with data available in the literature and provided new, homogeneous pulsation parameters (mean magnitudes, luminosity amplitudes,periods) for 187 candidate $omega$ Cen RR Lyrae (RRLs). Among them we have 101 RRc (first overtone), 85 RRab (fundamental) and a single candidate RRd (double-mode) variables. Candidate Blazhko RRLs show periods and colors that are intermediate between RRc and RRab variables, suggesting that they are transitional objects. The comparison of the period distribution and of the Bailey diagram indicates that RRLs in $omega$ Cen show a long-period tail not present in typical Oosterhoff II (OoII) globulars. The RRLs in dwarf spheroidals and in ultra faint dwarfs have properties between Oosterhoff intermediate and OoII clusters. Metallicity plays a key role in shaping the above evidence. These findings do not support the hypothesis that $omega$ Cen is the core remnant of a spoiled dwarf galaxy. Using optical Period-Wesenheit relations that are reddening-free and minimally dependent on metallicity we find a mean distance to $omega$ Cen of 13.71$pm$0.08$pm$0.01 mag (semi-empirical and theoretical calibrations). Finally, we invert the I-band Period-Luminosity-Metallicity relation to estimate individual RRLs metal abundances. The metallicity distribution agrees quite well with spectroscopic and photometric metallicity estimates available in the literature.
We present the method of the Extended Aperture Photometry (EAP) that we applied to K2 RR Lyrae stars. Our aim is to minimize the instrumental variations of attitude control maneuvers by using apertures that cover the positional changes in the field of view thus contain the stars during the whole observation. We present example light curves that we compared to the light curves from the K2 Systematics Correction (K2SC) pipeline applied to the automated Single Aperture Photometry (SAP) and to the Pre-search Data Conditioning Simple Aperture Photometry (PDCSAP) data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا