No Arabic abstract
We consider the timelike version of Warped Anti-de Sitter space (WAdS), which corresponds to the three-dimensional section of the G{o}del solution of four-dimensional cosmological Einstein equations. This geometry presents closed timelike curves (CTCs), which are inherited from its four-dimensional embedding. In three dimensions, this type of solutions can be supported without matter provided the graviton acquires mass. Here, among the different ways to consistenly give mass to the graviton in three dimensions, we consider the parity-even model known as New Massive Gravity (NMG). In the bulk of timelike WAdS$_{3}$ space, we introduce defects that, from the three-dimensional point of view, represent spinning massive particle-like objects. For this type of sources, we investigate the definition of quasi-local gravitational energy as seen from infinity, far beyond the region where the CTCs appear. We also consider the covariant formalism applied to NMG to compute the mass and the angular momentum of spinning particle-like defects, and compare the result with the one obtained by means of the quasi-local stress-tensor. We apply these methods to special limits in which the WAdS$_3$ solutions coincide with locally AdS$_3$ and locally AdS$_{2}times mathbb{R}$ spaces. Finally, we make some comments about the asymptotic symmetry algebra of asymptotically WAdS$_3$ spaces in NMG.
We study a toy model of the Kerr/CFT correspondence using string theory on AdS$_3 times S^3$. We propose a single trace irrelevant deformation of the dual CFT generated by a vertex operator with spacetime dimensions (2,1). This operator shares the same quantum numbers as the integrable $Tbar{J}$ deformation of two-dimensional CFTs where $bar{J}$ is a chiral $U(1)$ current. We show that the deformation is marginal on the worldsheet and that the target spacetime is deformed to null warped AdS$_3$ upon dimensional reduction. We also calculate the spectrum of the deformed theory on the cylinder and compare it to the field theory analysis of $Tbar{J}$-deformed CFTs.
We compute the ultraviolet divergences of holographic subregion complexity for the left and right factors of the thermofield double state in warped AdS$_3$ black holes, both for the action and the volume conjectures. Besides the linear divergences, which are also present in the BTZ black hole, additional logarithmic divergences appear. For the action conjecture, these log divergences are not affected by the arbitrarity in the length scale associated with the counterterm needed to ensure reparameterization invariance. We find that the subregion action complexity obeys the superadditivity property for the thermofield double in warped AdS$_3$, independently from the action counterterm coefficient. We study the temperature dependence of subregion complexity at constant angular momentum and we find that it is correlated with the sign of the specific heat.
It is well known that Kasner geometry with space-like singularity can be extended to bulk AdS-like geometry, furthermore one can study field theory on this Kasner space via its gravity dual. In this paper, we show that there exists a Kasner-like geometry with timelike singularity for which one can construct a dual gravity description. We then study various extremal surfaces including space-like geodesics in the dual gravity description. Finally, we compute correlators of highly massive operators in the boundary field theory with a geodesic approximation.
In any generally covariant theory of gravity, we show the relationship between the linearized asymptotically conserved current and its non-linear completion through the identically conserved current. Our formulation for conserved charges is based on the Lagrangian description, and so completely covariant. By using this result, we give a prescription to define quasi-local conserved charges in any higher derivative gravity. As applications of our approach, we demonstrate the angular momentum invariance along the radial direction of black holes and reproduce more efficiently the linearized potential on the asymptotic AdS space.
We determine the most general form of off-shell N=(1,1) supergravity field configurations in three dimensions by requiring that at least one off-shell Killing spinor exists. We then impose the field equations of the topologically massive off-shell supergravity and find a class of solutions whose properties crucially depend on the norm of the auxiliary vector field. These are spacelike-squashed and timelike-stretched AdS_3 for the spacelike and timelike norms, respectively. At the transition point where the norm vanishes, the solution is null warped AdS_3. This occurs when the coefficient of the Lorentz-Chern-Simons term is related to the AdS radius by $muell=2$. We find that the spacelike-squashed AdS_3 can be modded out by a suitable discrete subgroup of the isometry group, yielding an extremal black hole solution which avoid closed timelike curves.