Do you want to publish a course? Click here

Boundary multipliers of a family of Mobius invariant function spaces

107   0   0.0 ( 0 )
 Added by Jordi Pau
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

For $1<p<infty$ and $0<s<1$, let $mathcal{Q}^p_ s (mathbb{T})$ be the space of those functions $f$ which belong to $ L^p(mathbb{T})$ and satisfy [ sup_{Isubset mathbb{T}}frac{1}{|I|^s}int_Iint_Ifrac{|f(zeta)-f(eta)|^p}{|zeta-eta|^{2-s}}|dzeta||deta|<infty, ] where $|I|$ is the length of an arc $I$ of the unit circle $mathbb{T}$ . In this paper, we give a complete description of multipliers between $mathcal{Q}^p_ s (mathbb{T})$ spaces. The spectra of multiplication operators on $mathcal{Q}^p_ s (mathbb{T})$ are also obtained.



rate research

Read More

In this paper we examine the multipliers from one model space to another.
In this paper we discuss the multipliers between range spaces of co-analytic Toeplitz operators.
66 - Anton Baranov 2015
We study two geometric properties of reproducing kernels in model spaces $K_theta$where $theta$ is an inner function in the disc: overcompleteness and existence of uniformly minimalsystems of reproducing kernels which do not contain Riesz basic sequences. Both of these properties are related to the notion of the Ahern--Clark point. It is shown that uniformly minimal non-Riesz$ $ sequences of reproducing kernelsexist near each Ahern--Clark point which is not an analyticity point for $theta$, whileovercompleteness may occur only near the Ahern--Clark points of infinite orderand is equivalent to a zero localization property. In this context the notion ofquasi-analyticity appears naturally, and as a by-product of our results we give conditions in thespirit of Ahern--Clark for the restriction of a model space to a radius to be a class ofquasi-analyticity.
We investigate the relationship between quasisymmetric and convergence groups acting on the circle. We show that the Mobius transformations of the circle form a maximal convergence group. This completes the characterization of the Mobius group as a maximal convergence group acting on the sphere. Previously, Gehring and Martin had shown the maximality of the Mobius group on spheres of dimension greater than one. Maximality of the isometry (conformal) group of the hyperbolic plane as a uniform quasi-isometry group, uniformly quasiconformal group, and as a convergence group in which each element is topologically conjugate to an isometry may be viewed as consequences.
We compare a Gromov hyperbolic metric with the hyperbolic metric in the unit ball or in the upper half space, and prove sharp comparison inequalities between the Gromov hyperbolic metric and some hyperbolic type metrics. We also obtain several sharp distortion inequalities for the Gromov hyperbolic metric under some families of M{o}bius transformations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا