Do you want to publish a course? Click here

The Differential Size Growth of Field and Cluster Galaxies at z=2.1 Using the ZFOURGE Survey

120   0   0.0 ( 0 )
 Added by Rebecca Allen
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

There is ongoing debate regarding the extent that environment affects galaxy size growth beyond z>1. To investigate the differences in star-forming and quiescent galaxy properties as a function of environment at z=2.1, we create a mass-complete sample of 59 cluster galaxies Spitler et al. (2012) and 478 field galaxies with log(M)>9 using photometric redshifts from the ZFOURGE survey. We compare the mass-size relation of field and cluster galaxies using measured galaxy semi-major axis half-light radii ($r_{1/2,maj}$) from CANDELS HST/F160W imaging. We find consistent mass normalized (log(M)=10.7) sizes for quiescent field galaxies ($r_{1/2,maj}=1.81pm0.29$ kpc) and quiescent cluster galaxies ($r_{1/2,maj}=2.17pm0.63$ kpc). The mass normalized size of star-forming cluster galaxies ($r_{1/2,maj}=4.00pm0.26$ kpc ) is 12% larger (KS test $2.1sigma$) than star-forming field galaxies ($r_{1/2,maj}=3.57pm0.10$ kpc). From the mass-color relation we find that quiescent field galaxies with 9.7<log(M)<10.4 are slightly redder (KS test $3.6sigma$) than quiescent cluster galaxies, while cluster and field quiescent galaxies with log(M)>10.4 have consistent colors. We find that star-forming cluster galaxies are on average 20% redder than star-forming field galaxies at all masses. Furthermore, we stack galaxy images to measure average radial color profiles as a function of mass. Negative color gradients are only present for massive star-forming field and cluster galaxies with log(M)>10.4, the remaining galaxy masses and types have flat profiles. Our results suggest given the observed differences in size and color of star-forming field and cluster galaxies, that the environment has begun to influence/accelerate their evolution. However, the lack of differences between field and cluster quiescent galaxies indicates that the environment has not begun to significantly influence their evolution at z~2.



rate research

Read More

For the first time, we present the size evolution of a mass-complete (log(M*/Msol)>10) sample of star-forming galaxies over redshifts z=1-7, selected from the FourStar Galaxy Evolution Survey (ZFOURGE). Observed H-band sizes are measured from the Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey (CANDELS) Hubble Space Telescope (HST)/F160W imaging. Distributions of individual galaxy masses and sizes illustrate that a clear mass-size relation exists up to z~7. At z~7, we find that the average galaxy size from the mass-size relation is more compact at a fixed mass of log(M*/Msol)=10.1, with r_1/2,maj=1.02+/-0.29 kpc, than at lower redshifts. This is consistent with our results from stacking the same CANDELS HST/F160W imaging, when we correct for galaxy position angle alignment. We find that the size evolution of star-forming galaxies is well fit by a power law of the form r_e = 7.07(1 + z)^-0.89 kpc, which is consistent with previous works for normal star-formers at 1<z<4. In order to compare our slope with those derived Lyman break galaxy studies, we correct for different IMFs and methodology and find a slope of -0.97+/-0.02, which is shallower than that reported for the evolution of Lyman break galaxies at z>4 (r_epropto(1 +z)^-1.2+/-0.06). Therefore, we conclude the Lyman break galaxies likely represent a subset of highly star-forming galaxies that exhibit rapid size growth at z>4.
278 - V. Tilvi 2013
Star-forming galaxies at redshifts z>6 are likely responsible for the reionization of the universe, and it is important to study the nature of these galaxies. We present three candidates for z~7 Lyman-break galaxies (LBGs) from a 155 arcmin^2 area in the CANDELS/COSMOS field imaged by the deep FourStar Galaxy Evolution (zFourGE) survey. The FourStar medium-band filters provide the equivalent of R~10 spectroscopy, which cleanly distinguishes between z~7 LBGs and brown dwarf stars. The distinction between stars and galaxies based on an objects angular size can become unreliable even when using HST imaging; there exists at least one very compact z~7 candidate (FWHM~0.5-1 kpc) that is indistinguishable from a point source. The medium-band filters provide narrower redshift distributions compared with broad-band-derived redshifts. The UV luminosity function derived using the three z~7 candidates is consistent with previous studies, suggesting an evolution at the bright end (MUV -21.6 mag) from z~7 to z~5. Fitting the galaxies spectral energy distributions, we predict Lyman-alpha equivalent widths for the two brightest LBGs, and find that the presence of a Lyman-alpha line affects the medium-band flux thereby changing the constraints on stellar masses and UV spectral slopes. This illustrates the limitations of deriving LBG properties using only broad-band photometry. The derived specific star-formation rates for the bright LBGs are ~13 per Gyr, slightly higher than the lower-luminosity LBGs, implying that the star-formation rate increases with stellar mass for these galaxies.
To understand how strong emission line galaxies (ELGs) contribute to the overall growth of galaxies and star formation history of the universe, we target Strong ELGs (SELGs) from the ZFOURGE imaging survey that have blended (Hb+[OIII]) rest-frame equivalent widths of >230A and 2.5<zphot<4.0. Using Keck/MOSFIRE, we measure 49 redshifts for galaxies brighter than Ks=25 mag as part of our Multi-Object Spectroscopic Emission Line (MOSEL) survey. Our spectroscopic success rate is ~53% and zphot uncertainty is sigma_z= [Delta(z)/(1+z)]=0.0135. We confirm 31 ELGs at 3<zspec<3.8 and show that Strong ELGs have spectroscopic rest-frame [OIII]5007A equivalent widths of 100-500A and tend to be lower mass systems [log(Mstar/Msun)~8.2-9.6] compared to more typical star-forming galaxies. The Strong ELGs lie ~0.9 dex above the star-forming main-sequence at z~3.5 and have high inferred gas fractions of fgas~>60%, i.e. the inferred gas masses can easily fuel a starburst to double stellar masses within ~10-100 Myr. Combined with recent results using ZFOURGE, our analysis indicates that 1) strong [OIII]5007A emission signals an early episode of intense stellar growth in low mass (Mstar<0.1M*) galaxies and 2) many, if not most, galaxies at z>3 go through this starburst phase. If true, low-mass galaxies with strong [OIII]5007A emission (EW_rest>200A) may be an increasingly important source of ionizing UV radiation at z>3.
We use K-band spectroscopic data from the Multi-Object Spectroscopic Emission Line (MOSEL) survey to analyze the kinematic properties of galaxies at z>3. Our sample consists of 34 galaxies at 3.0<zspec<3.8 between 9.0<log(M_star)<11.0. We find that galaxies with log(M_star) > 10.2 at z > 3 have 56 +/- 21 km/s lower integrated velocity dispersion compared to galaxies at z ~ 2 of similar stellar mass. Massive galaxies at z > 3 have either a flat or declining star formation history (SFH), whereas similar stellar mass galaxies at z~2.0 exhibit a slight peak in the past 500 Myrs. Comparing with the IllustrisTNG cosmological simulation, we find that (i) the dynamical mass of massive galaxies in simulations (log(M_star) > 10.0) increases by ~0.1 dex at a fixed stellar mass between z=2.0-3.0, and (ii) dynamical mass growth is coupled with a rapid rise in the ex-situ stellar mass fraction (stars accreted from other galaxies) for massive galaxies at z < 3.5. We speculate that the rising contribution of ex-situ stellar mass to the total stellar mass growth of massive galaxies is driving the higher integrated velocity dispersion and rising SFHs of massive galaxies at z~2.0 compared to galaxies of similar stellar masses at z > 3.
73 - M. Kubo , T. Yamada , T. Ichikawa 2017
We present the near-infrared high resolution imaging of an extremely dense group of galaxies at the core of the protocluster at $z=3.09$ in the SSA22 field by using the adaptive optics AO188 and the Infrared Camera and Spectrograph (IRCS) on Subaru Telescope. Wide morphological variety of them suggests their on-going dramatic evolutions. One of the two quiescent galaxies (QGs), the most massive one in the group, is a compact elliptical with an effective radius $r_{e} = 1.37pm0.75$ kpc. It supports the two-phase formation scenario of giant ellipticals today that a massive compact elliptical is formed at once and evolves in the size and stellar mass by series of mergers. Since this object is a plausible progenitor of a brightest cluster galaxy (BCG) of one of the most massive clusters today, it requires strong size ($ga10$) and stellar mass ($sim$ four times by $z=0$) growths. Another QG hosts an AGN(s) and is fitted with a model composed from an nuclear component and Sersic model. It shows spatially extended [O{footnotesize III}]$lambda$5007 emission line compared to the continuum emission, a plausible evidence of outflows. Massive star forming galaxies (SFGs) in the group are two to three times larger than the field SFGs at similar redshift. Although we obtained the $K$-band image deeper than the previous one, we found no candidate new members. This implies a physical deficiency of low mass galaxies with stellar mass $M_{star}la4times10^{10}~M_{odot}$ and/or poor detection completeness of them owing to their diffuse morphologies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا