No Arabic abstract
We investigate the mutiphoton process between different Bloch states in an amplitude modulated optical lattice. In the experiment, we perform the modulation with more than one frequency components, which includes a high degree of freedom and provides a flexible way to coherently control quantum states. Based on the study of single frequency modulation, we investigate the collaborative effect of different frequency components in two aspects. Through double frequency modulations, the spectrums of excitation rates for different lattice depths are measured. Moreover, interference between two separated excitation paths is shown, emphasizing the influence of modulation phases when two modulation frequencies are commensurate. Finally, we demonstrate the application of the double frequency modulation to design a large-momentum-transfer beam splitter. The beam splitter is easy in practice and would not introduce phase shift between two arms.
We report on a generic cooling technique for atoms trapped in optical lattices. It consists in modulating the lattice depth with a proper frequency sweeping. This filtering technique removes the most energetic atoms, and provides with the onset of thermalization a cooling mechanism reminiscent of evaporative cooling. However, the selection is here performed in quasi-momentum space rather than in position space. Interband selection rules are used to protect the population with a zero quasi-momentum, namely the Bose Einstein condensate. Direct condensation of thermal atoms in an optical lattice is also achieved with this technique. It offers an interesting complementary cooling mechanism for quantum simulations performed with quantum gases trapped in optical lattices.
We measure the conductivity of neutral fermions in a cubic optical lattice. Using in-situ fluorescence microscopy, we observe the alternating current resultant from a single-frequency uniform force applied by displacement of a weak harmonic trapping potential. In the linear response regime, a neutral-particle analogue of Ohms law gives the conductivity as the ratio of total current to force. For various lattice depths, temperatures, interaction strengths, and fillings, we measure both real and imaginary conductivity, up to a frequency sufficient to capture the transport dynamics within the lowest band. The spectral width of the real conductivity reveals the current dissipation rate in the lattice, and the integrated spectral weight is related to thermodynamic properties of the system through a sum rule. The global conductivity decreases with increased band-averaged effective mass, which at high temperatures approaches a T-linear regime. Relaxation of current is observed to require a finite lattice depth, which breaks Galilean invariance and enables damping through collisions between fermions.
We propose a scheme for quantum computation in optical lattices. The qubits are encoded in the spacial wavefunction of the atoms such that spin decoherence does not influence the computation. Quantum operations are steered by shaking the lattice while qubit addressability can be provided with experimentally available techniques of changing the lattice with single-site resolution. Numerical calculations show possible fidelities above 99% with gate times on the order of milliseconds.
We demonstrate that the transport characteristics of deep optical lattices with one or multiple off-resonant external energy offsets can be greatly-enhanced by modulating the lattice depth in an exotic way. We derive effective stationary models for our proposed modulation schemes in the strongly interacting limit, where only one particle can occupy any given site. Afterwards we discuss the modifications necessary to recover transport when more than one particle may occupy the lattice sites. For the specific five-site lattices discussed, we numerically predict transport gains for ranging from $4.7times 10^6$ to $9.8times 10^{8}$.
We demonstrate fluorescence microscopy of individual fermionic potassium atoms in a 527-nm-period optical lattice. Using electromagnetically induced transparency (EIT) cooling on the 770.1-nm D$_1$ transition of $^{40}$K, we find that atoms remain at individual sites of a 0.3-mK-deep lattice, with a $1/e$ pinning lifetime of $67(9),rm{s}$, while scattering $sim 10^3$ photons per second. The plane to be imaged is isolated using microwave spectroscopy in a magnetic field gradient, and can be chosen at any depth within the three-dimensional lattice. With a similar protocol, we also demonstrate patterned selection within a single lattice plane. High resolution images are acquired using a microscope objective with 0.8 numerical aperture, from which we determine the occupation of lattice sites in the imaging plane with 94(2)% fidelity per atom. Imaging with single-atom sensitivity and addressing with single-site accuracy are key steps towards the search for unconventional superfluidity of fermions in optical lattices, the initialization and characterization of transport and non-equilibrium dynamics, and the observation of magnetic domains.