No Arabic abstract
We study the problem of load balancing in distributed stream processing engines, which is exacerbated in the presence of skew. We introduce Partial Key Grouping (PKG), a new stream partitioning scheme that adapts the classical power of two choices to a distributed streaming setting by leveraging two novel techniques: key splitting and local load estimation. In so doing, it achieves better load balancing than key grouping while being more scalable than shuffle grouping. We test PKG on several large datasets, both real-world and synthetic. Compared to standard hashing, PKG reduces the load imbalance by up to several orders of magnitude, and often achieves nearly-perfect load balance. This result translates into an improvement of up to 60% in throughput and up to 45% in latency when deployed on a real Storm cluster.
Distributed Stream Processing (DSP) systems enable processing large streams of continuous data to produce results in near to real time. They are an essential part of many data-intensive applications and analytics platforms. The rate at which events arrive at DSP systems can vary considerably over time, which may be due to trends, cyclic, and seasonal patterns within the data streams. A priori knowledge of incoming workloads enables proactive approaches to resource management and optimization tasks such as dynamic scaling, live migration of resources, and the tuning of configuration parameters during run-times, thus leading to a potentially better Quality of Service. In this paper we conduct a comprehensive evaluation of different load prediction techniques for DSP jobs. We identify three use-cases and formulate requirements for making load predictions specific to DSP jobs. Automatically optimized classical and Deep Learning methods are being evaluated on nine different datasets from typical DSP domains, i.e. the IoT, Web 2.0, and cluster monitoring. We compare model performance with respect to overall accuracy and training duration. Our results show that the Deep Learning methods provide the most accurate load predictions for the majority of the evaluated datasets.
Stream applications are widely deployed on the cloud. While modern distributed streaming systems like Flink and Spark Streaming can schedule and execute them efficiently, streaming dataflows are often dynamically changing, which may cause computation imbalance and backpressure. We introduce AutoFlow, an automatic, hotspot-aware dynamic load balance system for streaming dataflows. It incorporates a centralized scheduler which monitors the load balance in the entire dataflow dynamically and implements state migrations correspondingly. The scheduler achieves these two tasks using a simple asynchronous distributed control message mechanism and a hotspot-diminishing algorithm. The timing mechanism supports implicit barriers and a highly efficient state-migration without global barriers or pauses to operators. It also supports a time-window based load-balance measurement and feeds them to the hotspot-diminishing algorithm without user interference. We implemented AutoFlow on top of Ray, an actor-based distributed execution framework. Our evaluation based on various streaming benchmark dataset shows that AutoFlow achieves good load-balance and incurs a low latency overhead in highly data-skew workload.
We introduce a new graph problem, the token dropping game, and we show how to solve it efficiently in a distributed setting. We use the token dropping game as a tool to design an efficient distributed algorithm for stable orientations and more generally for locally optimal semi-matchings. The prior work by Czygrinow et al. (DISC 2012) finds a stable orientation in $O(Delta^5)$ rounds in graphs of maximum degree $Delta$, while we improve it to $O(Delta^4)$ and also prove a lower bound of $Omega(Delta)$.
In this paper we consider neighborhood load balancing in the context of selfish clients. We assume that a network of n processors and m tasks is given. The processors may have different speeds and the tasks may have different weights. Every task is controlled by a selfish user. The objective of the user is to allocate his/her task to a processor with minimum load. We revisit the concurrent probabilistic protocol introduced in [6], which works in sequential rounds. In each round every task is allowed to query the load of one randomly chosen neighboring processor. If that load is smaller the task will migrate to that processor with a suitably chosen probability. Using techniques from spectral graph theory we obtain upper bounds on the expected convergence time towards approximate and exact Nash equilibria that are significantly better than the previous results in [6]. We show results for uniform tasks on non-uniform processors and the general case where the tasks have different weights and the machines have speeds. To the best of our knowledge, these are the first results for this general setting.
Distributed Stream Processing systems are becoming an increasingly essential part of Big Data processing platforms as users grow ever more reliant on their ability to provide fast access to new results. As such, making timely decisions based on these results is dependent on a systems ability to tolerate failure. Typically, these systems achieve fault tolerance and the ability to recover automatically from partial failures by implementing checkpoint and rollback recovery. However, owing to the statistical probability of partial failures occurring in these distributed environments and the variability of workloads upon which jobs are expected to operate, static configurations will often not meet Quality of Service constraints with low overhead. In this paper we present Khaos, a new approach which utilizes the parallel processing capabilities of virtual cloud automation technologies for the automatic runtime optimization of fault tolerance configurations in Distributed Stream Processing jobs. Our approach employs three subsequent phases which borrows from the principles of Chaos Engineering: establish the steady-state processing conditions, conduct experiments to better understand how the system performs under failure, and use this knowledge to continuously minimize Quality of Service violations. We implemented Khaos prototypically together with Apache Flink and demonstrate its usefulness experimentally.