Do you want to publish a course? Click here

Partial transpose of two disjoint blocks in XY spin chains

137   0   0.0 ( 0 )
 Added by Andrea Coser
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider the partial transpose of the spin reduced density matrix of two disjoint blocks in spin chains admitting a representation in terms of free fermions, such as XY chains. We exploit the solution of the model in terms of Majorana fermions and show that such partial transpose in the spin variables is a linear combination of four Gaussian fermionic operators. This representation allows to explicitly construct and evaluate the integer moments of the partial transpose. We numerically study critical XX and Ising chains and we show that the asymptotic results for large blocks agree with conformal field theory predictions if corrections to the scaling are properly taken into account.



rate research

Read More

We reconsider the moments of the reduced density matrix of two disjoint intervals and of its partial transpose with respect to one interval for critical free fermionic lattice models. It is known that these matrices are sums of either two or four Gaussian matrices and hence their moments can be reconstructed as computable sums of products of Gaussian operators. We find that, in the scaling limit, each term in these sums is in one-to-one correspondence with the partition function of the corresponding conformal field theory on the underlying Riemann surface with a given spin structure. The analytical findings have been checked against numerical results for the Ising chain and for the XX spin chain at the critical point.
We study the moments of the partial transpose of the reduced density matrix of two intervals for the free massless Dirac fermion. By means of a direct calculation based on coherent state path integral, we find an analytic form for these moments in terms of the Riemann theta function. We show that the moments of arbitrary order are equal to the same quantities for the compactified boson at the self-dual point. These equalities imply the non trivial result that also the negativity of the free fermion and the self-dual boson are equal.
In this letter we continue the investigation of finite XXZ spin chains with periodic boundary conditions and odd number of sites, initiated in paper cite{S}. As it turned out, for a special value of the asymmetry parameter $Delta=-1/2$ the Hamiltonian of the system has an eigenvalue, which is exactly proportional to the number of sites $E=-3N/2$. Using {sc Mathematica} we have found explicitly the corresponding eigenvectors for $N le 17$. The obtained results support the conjecture of paper cite{S} that this special eigenvalue corresponds to the ground state vector. We make a lot of conjectures concerning the correlations of the model. Many remarkable relations between the wave function components are noticed. It is turned out, for example, that the ratio of the largest component to the least one is equal to the number of the alternating sing matrices.
We introduce a new class of open, translationally invariant spin chains with long-range interactions depending on both spin permutation and (polarized) spin reversal operators, which includes the Haldane-Shastry chain as a particular degenerate case. The new class is characterized by the fact that the Hamiltonian is invariant under twisted translations, combining an ordinary translation with a spin flip at one end of the chain. It includes a remarkable model with elliptic spin-spin interactions, smoothly interpolating between the XXX Heisenberg model with anti-periodic boundary conditions and a new open chain with sites uniformly spaced on a half-circle and interactions inversely proportional to the square of the distance between the spins. We are able to compute in closed form the partition function of the latter chain, thereby obtaining a complete description of its spectrum in terms of a pair of independent su(1|1) and ${rm su}(m/2)$ motifs when the number $m$ of internal degrees of freedom is even. This implies that the even $m$ model is invariant under the direct sum of the Yangians $Y$(gl(1|1)) and $Y$(gl$(0|m/2)$). We also analyze several statistical properties of the new chains spectrum. In particular, we show that it is highly degenerate, which strongly suggests the existence of an underlying (twisted) Yangian symmetry also for odd $m$.
We study the finite-size behavior of the low-lying excitations of spin-1/2 Heisenberg chains with dimerization and next-to-nearest neighbors interaction, J_2. The numerical analysis, performed using density-matrix renormalization group, confirms previous exact diagonalization results, and shows that, for different values of the dimerization parameter delta, the elementary triplet and singlet excitations present a clear scaling behavior in a wide range of ell=L/xi (where L is the length of the chain and xi is the correlation length). At J_2=J_2c, where no logarithmic corrections are present, we compare the numerical results with finite-size predictions for the sine-Gordon model obtained using Luschers theory. For small delta we find a very good agreement for ell > 4 or 7 depending on the excitation considered.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا