Do you want to publish a course? Click here

The role of 3-body H$_2$ formation in the fragmentation of primordial gas

148   0   0.0 ( 0 )
 Added by Biman Nath
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

It has been shown that the behaviour of primordial gas collapsing in a dark matter minihalo can depend on the adopted choice of 3-body H$_2$ formation rate. The uncertainties in this rate span two orders of magnitude in the current literature, and so it remains a source of uncertainty in our knowledge of population III star formation. Here we investigate how the amount of fragmentation in primordial gas depends on the adopted 3-body rate. We present the results of calculations that follow the chemical and thermal evolution of primordial gas as it collapses in two dark matter minihalos. Our results on the effect of 3-body rate on the evolution until the first protostar forms agree well with previous studies. However, our modified version of GADGET-2 SPH also includes sink particles, which allows us to follow the initial evolution of the accretion disc that builds up on the centre of each halo, and capture the fragmentation in gas as well as its dependence on the adopted 3-body H$_2$ formation rate. We find that the fragmentation behaviour of the gas is only marginally effected by the choice of 3-body rate co-efficient, and that halo-to-halo differences are of equal importance in affecting the final mass distribution of stars.



rate research

Read More

The adiabatic index of H$_2,$ ($gamma_{mathrm{H_2}}$) is non-constant at temperatures between $100-10^4,mathrm{K}$ due to the large energy spacing between its rotational and vibrational modes. For the formation of the first stars at redshifts 20 and above, this variation can be significant because primordial molecular clouds are in this temperature range due to the absence of efficient cooling by dust and metals. We study the possible importance of variations in $gamma_{mathrm{H_2}}$ for the primordial initial mass function by carrying out 80 3D gravito-hydrodynamic simulations of collapsing clouds with different random turbulent velocity fields, half using fixed $gamma_{rm H_2} = 7/5$ in the limit of classical diatomic gas (used in earlier works) and half using an accurate quantum mechanical treatment of $gamma_{mathrm{H_2}}$. We use the adaptive mesh refinement code FLASH with the primordial chemistry network from KROME for this study. The simulation suite produces almost 400 stars, with masses from $0.02 - 50$ M$_odot$ (mean mass $sim 10.5,mathrm{M_{odot}}$ and mean multiplicity fraction $sim 0.4$). While the results of individual simulations do differ when we change our treatment of $gamma_{mathrm{H_2}}$, we find no statistically significant differences in the overall mass or multiplicity distributions of the stars formed in the two sets of runs. We conclude that, at least prior to the onset of radiation feedback, approximating H$_2$ as a classical diatomic gas with $gamma_{rm H_2} = 7/5$ does not induce significant errors in simulations of the fragmentation of primordial gas. Nonetheless, we recommend using the accurate formulation of the H$_2,$ adiabatic index in primordial star formation studies since it is not computationally more expensive and provides a better treatment of the thermodynamics.
The radiative cooling of shocked gas with primordial chemical composition is an important process relevant to the formation of the first stars and structures, as well as taking place also in high velocity cloud collisions and supernovae explosions. Among the different processes that need to be considered, the formation kinetics and cooling of molecular hydrogen are of prime interest, since they provide the only way to lower the gas temperature to values well below $sim$10$^4$~K. In previous works, the internal energy level structure of H$_2$ and its cation has been treated in the approximation of rovibrational ground state at low densities, or trying to describe the dynamics using some arbitrary $v>0$ H$_2$ level that is considered representative of the excited vibrational manifold. In this study, we compute the vibrationally resolved kinetics for the time-dependent chemical and thermal evolution of the post-shock gas in a medium of primordial composition. The calculated non-equilibrium distributions are used to evaluate effects on the cooling function of the gas and on the cooling time. Finally, we discuss the dependence of the results to different initial values of the shock velocity and redshift.
Recent high-resolution simulations demonstrate that disks around primordial protostars easily fragment in the accretion phase before the protostars accrete less than a solar mass. To understand why the gravitational instability generally causes the fragmentation so early, we develop a one-dimensional (1D) non-steady model of the circumstellar disk that takes the mass supply from an accretion envelope into account. We also compare the model results to a three-dimensional (3D) numerical simulation performed with a code employing the adaptive mesh refinement. Our model shows that the self-gravitating disk, through which the Toomre $Q$ parameter is nearly constant at $Q sim 1$, gradually spreads as the disk is fed by the gas infalling from the envelope. We further find that the accretion rate onto the star is an order of magnitude smaller than the mass supply rate onto the disk. This discrepancy makes the disk more massive than the protostar in an early evolutionary stage. Most of the infalling gas is used to extend the outer part of the self-gravitating disk rather than transferred inward toward the star through the disk. We find that similar evolution also occurs in the 3D simulation, where the disk becomes three times more massive than the star before the first fragmentation occurs. Our 1D disk model well explains the evolution of the disk-to-star mass ratio observed in the simulation. We argue that the formation of such a massive disk leads to the early disk fragmentation.
We re-analyse current single-field inflationary models related to primordial black holes formation. We do so by taking into account recent developments on the estimations of their abundances and the influence of non-gaussianities. We show that, for all of them, the gaussian approximation, which is typically used to estimate the primordial black holes abundances, fails. However, in the case in which the inflaton potential has an inflection point, the contribution of non-gaussianities is only perturbative. Finally, we infer that only models featuring an inflection point in the inflationary potential, might predict, with a very good approximation, the desired abundances by the sole use of the gaussian statistics.
In our grid of multiphase chemical evolution models (Molla & Diaz, 2005), star formation in the disk occurs in two steps: first, molecular gas forms, and then stars are created by cloud-cloud collisions or interactions of massive stars with the surrounding molecular clouds. The formation of both molecular clouds and stars are treated through the use of free parameters we refer to as efficiencies. In this work we modify the formation of molecular clouds based on several new prescriptions existing in the literature, and we compare the results obtained for a chemical evolution model of the Milky Way Galaxy regarding the evolution of the Solar region, the radial structure of the Galactic disk, and the ratio between the diffuse and molecular components, HI/H$_2$. Our results show that the six prescriptions we have tested reproduce fairly consistent most of the observed trends, differing mostly in their predictions for the (poorly-constrained) outskirts of the Milky Way and the evolution in time of its radial structure. Among them, the model proposed by Ascasibar et al. (2017), where the conversion of diffuse gas into molecular clouds depends on the local stellar and gas densities as well as on the gas metallicity, seems to provide the best overall match to the observed data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا