We study the phase diagram of the ionic Hubbard model (IHM) at half-filling using dynamical mean field theory (DMFT), with two impurity solvers, namely, iterated perturbation theory (IPT) and continuous time quantum Monte Carlo (CTQMC). The physics of the IHM is governed by the competition between the staggered potential $Delta$ and the on-site Hubbard U. In both the methods we find that for a finite $Delta$ and at zero temperature, anti-ferromagnetic (AFM) order sets in beyond a threshold $U=U_{AF}$ via a first order phase transition below which the system is a paramagnetic band insulator. Both the methods show a clear evidence for a transition to a half-metal phase just after the AFM order is turned on, followed by the formation of an AFM insulator on further increasing U. We show that the results obtained within both the methods have good qualitative and quantitative consistency in the intermediate to strong coupling regime. On increasing the temperature, the AFM order is lost via a first order phase transition at a transition temperature $T_{AF}(U, Delta)$ within both the methods, for weak to intermediate values of U/t. But in the strongly correlated regime, where the effective low energy Hamiltonian is the Heisenberg model, IPT is unable to capture the thermal (Neel) transition from the AFM phase to the paramagnetic phase, but the CTQMC does. As a result, at any finite temperature T, DMFT+CTQMC shows a second phase transition (not seen within DMFT+IPT) on increasing U beyond $U_{AF}$. At $U_N > U_{AF}$, when the Neel temperature $T_N$ for the effective Heisenberg model becomes lower than T, the AFM order is lost via a second order transition. In the 3-dimensonal parameter space of $(U/t,T/t,Delta/t)$, there is a line of tricritical points that separates the surfaces of first and second order phase transitions.