Do you want to publish a course? Click here

Precise determination of $^{12}_{Lambda}$C level structure by $gamma$-ray spectroscopy

160   0   0.0 ( 0 )
 Added by Kenji Hosomi
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

Level structure of the $^{12}_{Lambda}$C hypernucleus was precisely determined by means of $gamma$-ray spectroscopy. We identified four $gamma$-ray transitions via the $^{12}$C$(pi^{+},K^{+}gamma)$ reaction using a germanium detector array, Hyperball2. The spacing of the ground-state doublet $(2^{-}_{1},1^{-}_{1})$ was measured to be $161.5pm0.3text{(stat)}pm0.3text{(syst)}$,keV from the direct $M1$ transition. Excitation energies of the $1^{-}_{2}$ and $1^{-}_{3}$ states were measured to be $2832pm3pm4$,keV and $6050pm8pm7$,keV, respectively. The obtained level energies provide definitive references for the reaction spectroscopy of $Lambda$ hypernuclei.



rate research

Read More

The energy spacing between the ground-state spin doublet of $^4_Lambda $He(1$^+$,0$^+$) was determined to be $1406 pm 2 pm 2$ keV, by measuring $gamma$ rays for the $1^+ to 0^+$ transition with a high efficiency germanium detector array in coincidence with the $^4$He$(K^-,pi^-)$ $^4_Lambda $He reaction at J-PARC. In comparison to the corresponding energy spacing in the mirror hypernucleus $^4_Lambda $H, the present result clearly indicates the existence of charge symmetry breaking (CSB) in $Lambda N$ interaction. It is also found that the CSB effect is large in the $0^+$ ground state but is by one order of magnitude smaller in the $1^+$ excited state, demonstrating that the $Lambda N$ CSB interaction has spin dependence.
72 - N.T. Zhang , X.Y. Wang , H. Chen 2019
We use an underground counting lab with an extremely low background to perform an activity measurement for the $^{12}$C+$^{13}$C system with energies down to $Erm_{c.m.}$=2.323 MeV, at which the $^{12}$C($^{13}$C,$p$)$^{24}$Na cross section is found to be 0.22(7) nb. The $^{12}$C+$^{13}$C fusion cross section is derived with a statistical model calibrated using experimental data. Our new result of the $^{12}$C+$^{13}$C fusion cross section is the first decisive evidence in the carbon isotope systems which rules out the existence of the astrophysical S-factor maximum predicted by the phenomenological hindrance model, while confirming the rising trend of the S-factor towards lower energies predicted by other models, such as CC-M3Y+Rep, DC-TDHF, KNS, SPP and ESW. After normalizing the model predictions with our data, a more reliable upper limit is established for the $^{12}$C+$^{12}$C fusion cross sections at stellar energies.
Excited states in the neutron-rich N=38,36 nuclei uc{60}{Ti} and uc{58}{Ti} were populated in nucleon-removal reactions from uc{61}{V} projectiles at 90~MeV/nucleon. The gamma-ray transitions from such states in these Ti isotopes were detected with the advanced gamma-ray tracking array GRETINA and were corrected event-by-event for large Doppler shifts (v/c sim 0.4) using the gamma-ray interaction points deduced from online signal decomposition. The new data indicate that a steep decrease in quadrupole collectivity occurs when moving from neutron-rich N=36,38 Fe and Cr toward the Ti and Ca isotones. In fact, uc{58,60}{Ti} provide some of the most neutron-rich benchmarks accessible today for calculations attempting to determine the structure of the potentially doubly-magic nucleus uc{60}{Ca}.
203 - A. Gade , D. Bazin , B.A. Brown 2011
Excited states in the very neutron-rich nuclei 35Mg and 33Na were populated in the fragmentation of a 38Si projectile beam on a Be target at 83 MeV/u beam energy. We report on the first observation of gamma-ray transitions in 35Mg, the odd-N neighbor of 34Mg and 36Mg, which are known to be part of the Island of Inversion around N = 20. The results are discussed in the framework of large- scale shell-model calculations. For the A = 3Z nucleus 33Na, a new gamma-ray transition was observed that is suggested to complete the gamma-ray cascade 7/2+ --> 5/2+ --> 3/2+ gs connecting three neutron 2p-2h intruder states that are predicted to form a close-to-ideal K = 3/2 rotational band in the strong-coupling limit.
The odd-$Z$ $^{251}$Md nucleus was studied using combined $gamma$-ray and conversion-electron in-beam spectroscopy. Besides the previously observed rotational band based on the $[521]1/2^-$ configuration, another rotational structure has been identified using $gamma$-$gamma$ coincidences. The use of electron spectroscopy allowed the rotational bands to be observed over a larger rotational frequency range. Using the transition intensities that depend on the gyromagnetic factor, a $[514]7/2^-$ single-particle configuration has been inferred for this band, i.e., the ground-state band. A physical background that dominates the electron spectrum with an intensity of $simeq$ 60% was well reproduced by simulating a set of unresolved excited bands. Moreover, a detailed analysis of the intensity profile as a function of the angular momentum provided a method for deriving the orbital gyromagnetic factor, namely $g_K = 0.69^{+0.19}_{-0.16}$ for the ground-state band. The odd-$Z$ $^{249}$Md was studied using $gamma$-ray in-beam spectroscopy. Evidence for octupole correlations resulting from the mixing of the $Delta l = Delta j = 3$ $[521]3/2^-$ and $[633]7/2^+$ Nilsson orbitals were found in both $^{249,251}$Md. A surprising similarity of the $^{251}$Md ground-state band transition energies with those of the excited band of $^{255}$Lr has been discussed in terms of identical bands. Skyrme-Hartree-Fock-Bogoliubov calculations were performed to investigate the origin of the similarities between these bands.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا