Do you want to publish a course? Click here

Constructing families of moderate-rank elliptic curves over number fields

579   0   0.0 ( 0 )
 Added by David Mehrle
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

We generalize a construction of families of moderate rank elliptic curves over $mathbb{Q}$ to number fields $K/mathbb{Q}$. The construction, originally due to Steven J. Miller, Alvaro Lozano-Robledo and Scott Arms, invokes a theorem of Rosen and Silverman to show that computing the rank of these curves can be done by controlling the average of the traces of Frobenius, the construction for number fields proceeds in essentially the same way. One novelty of this method is that we can construct families of moderate rank without having to explicitly determine points and calculating determinants of height matrices.



rate research

Read More

We present a method for constructing optimized equations for the modular curve X_1(N) using a local search algorithm on a suitably defined graph of birationally equivalent plane curves. We then apply these equations over a finite field F_q to efficiently generate elliptic curves with nontrivial N-torsion by searching for affine points on X_1(N)(F_q), and we give a fast method for generating curves with (or without) a point of order 4N using X_1(2N).
We prove two theorems concerning isogenies of elliptic curves over function fields. The first one describes the variation of the height of the $j$-invariant in an isogeny class. The second one is an isogeny estimate, providing an explicit bound on the degree of a minimal isogeny between two isogenous elliptic curves. We also give several corollaries of these two results.
In this paper, $p$ and $q$ are two different odd primes. First, We construct the congruent elliptic curves corresponding to $p$, $2p$, $pq$, and $2pq,$ then, in the cases of congruent numbers, we determine the rank of the corresponding congruent elliptic curves.
We show that there is essentially a unique elliptic curve $E$ defined over a cubic Galois extension $K$ of $mathbb Q$ with a $K$-rational point of order 13 and such that $E$ is not defined over $mathbb Q$.
85 - Yuri Bilu , Florian Luca 2016
Let X be a projective curve defined over Q and t a non-constant Q-rational function on X of degree at least 2. For every integer n pick a point P_n on X such that t(P_n)=n. A result of Dvornicich and Zannier implies that, for large N, among the number fields Q(P_1),...,Q(P_N) there are at least cN/log N distinct, where c>0. We prove that there are at least N/(log N)^{1-c} distinct fields, where c>0.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا