High quality electron beams with flat distributions in both energy and current are critical for many accelerator-based scientific facilities such as free-electron lasers and MeV ultrafast electron diffraction and microscopes. In this Letter we report on using corrugated structures to compensate for the beam nonlinear energy chirp imprinted by the curvature of the radio-frequency field, leading to a significant reduction in beam energy spread. By using a pair of corrugated structures with orthogonal orientations, we show that the quadrupole wake fields which otherwise increase beam emittance can be effectively canceled. This work also extends the applications of corrugated structures to the low beam charge (a few pC) and low beam energy (a few MeV) regime and may have a strong impact in many accelerator-based facilities.
Energy Recovery Linacs provide high-energy beams, but decelerate those beams before dumping them, so that their energy is available for the acceleration of new particles. During this deceleration, any relative energy spread that is created at high energy is amplified by the ratio between high energy and dump energy. Therefore, Energy Recovery Linacs are sensitive to energy spread acquired at high energy, e.g. from wake fields. One can compensate the time-correlated energy spread due to wakes via energy-dependent time-of-flight terms in appropriate sections of an Energy Recovery Linac, and via high-frequency cavities. We show that nonlinear time-of-flight terms can only eliminate odd orders in the correlation between time and energy, if these terms are created by a beam transport within the linac that is common for accelerating and decelerating beams. If these two beams are separated, so that different beam transport sections can be used to produce time-of-flight terms suitable for each, also even-order terms in the energy spread can be eliminated. As an example, we investigate the potential of using this method for the Cornell x-ray Energy Recovery Linac. Via quadratic time-of-flight terms, the energy spread can be reduced by 66%. Alternatively, since the energy spread from the dominantly resistive wake fields of the analysed accelerator is approximately harmonic in time, a high-frequency cavity could diminish the energy spread by 81%. This approach would require bunch-lengthening and recompression in separate sections for accelerating and decelerating beams. Such sections have therefore been included in Cornells x-ray Energy Recovery Linac design.
Removal of residual linear energy chirp and intrinsic nonlinear energy curvature in the relativistic electron beam from radiofrequency linear accelerator is of paramount importance for efficient lasing of a high-gain free-electron laser. Recently, it was theoretically and experimentally demonstrated that the longitudinal wakefield excited by the electrons itself in the corrugated structure allows for precise control of the electron beam phase space. In this Letter, we report the first utilization of a corrugated structure as beam linearizer in the operation of a seeded free-electron laser driven by a 140 MeV linear accelerator, where a gain of ~10,000 over spontaneous emission was achieved at the second harmonic of the 1047 nm seed laser, and a free-electron laser bandwidth narrowing by about 50% was observed, in good agreement with the theoretical expectations.
The extreme electromagnetic fields sustained by plasma-based accelerators allow for energy gain rates above 100 GeV/m but are also an inherent source of correlated energy spread. This severely limits the usability of these devices. Here we propose a novel compact concept which compensates the induced energy correlation by combining plasma accelerating stages with a magnetic chicane. Particle-in-cell and tracking simulations of a particular 1.5 m-long setup with two plasma stages show that 5.5 GeV bunches with a final relative energy spread of $1.2times10^{-3}$ (total) and $5.5times10^{-4}$ (slice) could be achieved while preserving sub-micron emittance. This at least one order of magnitude below current state-of-the-art and paves the way towards applications such as Free-Electron Lasers.
We present measurements of slice energy spread at the injector section of the European X-Ray Free Electron Laser for an electron bunch with charge of 250 pC. Two methods considered in the paper are based on measurements at the dispersive section after a transverse deflecting structure (TDS). The first approach uses measurements at different beam energies. We show that with a proper scaling of the TDS voltage with the beam energy the rms error of the measurement is less than 0.3 keV for the energy spread of 6 keV. In the second approach we demonstrate that keeping the beam energy constant but adjusting only the optics we are able to simplify the measurement complexity and to reduce the rms error below 0.1 keV. The accuracy of the measurement is confirmed by numerical modelling including beam transport effects and collective beam dynamics of the electron beam. The slice energy spread measured at the European XFEL for the beam charge of 250 pC is nearly 3 times lower as the one reported recently at SwissFEL for the same cathode material and the beam charge of 200 pC.
A 60 MeV beam at the BNL Accelerator Test Facility (ATF) was manipulated by a planar tunable de-chirper made out of two 10 cm long dielectric slabs with copper plated backs. While the gap was changed from 5.8 mm to 1 mm, the correlated energy chirp of the low charge electron bunch was reduced from approximately 330 keV/mm to zero. This result is in agreement with simulations. Calculations show that similar devices, properly scaled to account for the expected electron bunch charge and length, can be used to remove residual correlated energy spread at the end of the linacs used for free-electron lasers (FEL). Potentially, this technique could significantly simplify linac design and improve FEL performance.
Feichao Fu
,Rui Wang
,Pengfei Zhu
.
(2015)
.
"Demonstration of nonlinear-energy-spread compensation in relativistic electron bunches with corrugated structures"
.
Feichao Fu
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا