We have studied the electronic properties of the 2D electron liquid present at the LaAlO$_3$/SrTiO$_3$ interface in series of samples prepared at different growth temperatures. We observe that interfaces fabricated at 650{deg}C exhibit the highest low temperature mobility ($approx 10000 textrm{ cm}^2/textrm{Vs}$) and the lowest sheet carrier density ($approx 5times 10^{12} textrm{ cm}^{-2}$). These samples show metallic behavior and Shubnikov-de Haas oscillations in their magnetoresistance. Samples grown at higher temperatures (800-900{deg}C) display carrier densities in the range of $approx 2-5 times 10^{13} textrm{ cm}^{-2}$ and mobilities of $approx 1000 textrm{ cm}^2/textrm{Vs}$ at 4K. Reducing their carrier density by field effect to $8times 10^{12} textrm{ cm}^{-2}$ lowers their mobilites to $approx 50 textrm{ cm}^2/textrm{Vs}$ bringing the conductance to the weak-localization regime.
Recent experiments have shown that transition metal oxide heterostructures such as SrTiO$_3$-based interfaces, exhibit large, gate tunable, spintronic responses. Our theoretical study showcases key factors controlling the magnitude of the conversion, measured by the inverse Edelstein and Spin Hall effects, and their evolution with respect to an electrostatic doping. The origin of the response can be linked to spin-orbital textures. These stem from the broken inversion symmetry at the interface which produces an unusual form of the interfacial spin-orbit coupling, provided a bulk atomic spin-orbit contribution is present. The amplitudes and variations of these observables are direct consequences of the multi-orbital subband structure of these materials, featuring avoided and topological crossings. Interband contributions to the coefficients lead to enhanced responses and non-monotonic evolution with doping. We highlight these effects using analytical approaches and low energy modeling.
We report the angular dependence of magnetoresistance in two-dimensional electron gas at LaAlO$_3$/SrTiO$_3$ interface. We find that this interfacial magnetoresistance exhibits a similar angular dependence to the spin Hall magnetoresistance observed in ferromagnet/heavy metal bilayers, which has been so far discussed in the framework of bulk spin Hall effect of heavy metal layer. The observed magnetoresistance is in qualitative agreement with theoretical model calculation including both Rashba spin-orbit coupling and exchange interaction. Our result suggests that magnetic interfaces subject to spin-orbit coupling can generate a nonnegligible contribution to the spin Hall magnetoresistance and the interfacial spin-orbit coupling effect is therefore key to the understanding of various spin-orbit-coupling-related phenomena in magnetic/non-magnetic bilayers.
We investigated the effect of the tensile strain on the spin splitting at the n-type interface in LaAlO$_3$/SrTiO$_3$ in terms of the spin-orbit coupling coefficient $alpha$ and spin texture in the momentum space using first-principles calculations. We found that the $alpha$ could be controlled by the tensile strain and be enhanced up to 5 times for the tensile strain of 7%, and the effect of the tensile strain leads to a persistent spin helix, which has a long spin lifetime. These results support that the strain effect on LaAlO$_3$/SrTiO$_3$ is important for various applications such as spinFET and spin-to-charge conversion.
The two-dimensional electron gas occurring between the band insulators SrTiO$_3$ and LaAlO$_3$ continues to attract considerable interest, due to the possibility of dynamic control over the carrier density, and the ensuing phenomena such as magnetism and superconductivity. The formation of this conducting interface is sensitive to the growth conditions, but despite numerous investigations, there are still questions about the details of the physics involved. In particular, not much is known about the electronic structure of the growing LaAlO$_3$ layer at the growth temperature (around 800 $^o$C) in oxygen (pressure around $5times 10^{-5}$ mbar), since analysis techniques at these conditions are not readily available. We developed a pulsed laser deposition system inside a low-energy electron microscope in order to study this issue. The setup allows for layer-by-layer growth control and in-situ measurements of the angle-dependent electron reflection intensity, which can be used as a fingerprint of the electronic structure of the surface layers during growth. By using different substrate terminations and growth conditions we observe two families of reflectivity maps, which we can connect either to samples with an AlO$_2$-rich surface and a conducting interface; or to samples with a LaO-rich surface and an insulating interface. Our observations emphasize that substrate termination and stoichiometry determine the electronic structure of the growing layer, and thereby the conductance of the interface.
We have investigated the illumination effect on the magnetotransport properties of a two-dimensional electron system at the LaAlO$_3$/SrTiO$_3$ interface. The illumination significantly reduces the zero-field sheet resistance, eliminates the Kondo effect at low-temperature, and switches the negative magnetoresistance into the positive one. A large increase in the density of high-mobility carriers after illumination leads to quantum oscillations in the magnetoresistance originating from the Landau quantization. The carrier density ($sim 2 times 10^{12}$ cm$^{-2}$) and effective mass ($sim 1.7 ~m_e$) estimated from the oscillations suggest that the high-mobility electrons occupy the d$_{xz/yz}$ subbands of Ti:t$_{2g}$ orbital extending deep within the conducting sheet of SrTiO$_3$. Our results demonstrate that the illumination which induces additional carriers at the interface can pave the way to control the Kondo-like scattering and study the quantum transport in the complex oxide heterostructures.