Do you want to publish a course? Click here

An averaging trick for smooth actions of compact quantum groups on manifolds

145   0   0.0 ( 0 )
 Added by Debashish Goswami
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

We prove that, given any smooth action of a compact quantum group (in the sense of cite{rigidity}) on a compact smooth manifold satisfying some more natural conditions, one can get a Riemannian structure on the manifold for which the corresponding $C^infty(M)$-valued inner product on the space of one-forms is preserved by the action.



rate research

Read More

110 - Debashish Goswami 2018
Suppose that a compact quantum group ${mathcal Q}$ acts faithfully on a smooth, compact, connected manifold $M$, i.e. has a $C^{ast}$ (co)-action $alpha$ on $C(M)$, such that $alpha(C^infty(M)) subseteq C^infty(M, {mathcal Q})$ and the linear span of $alpha(C^infty(M))(1 otimes {mathcal Q})$ is dense in $C^infty(M, {mathcal Q})$ with respect to the Frechet topology. It was conjectured by the author quite a few years ago that ${mathcal Q}$ must be commutative as a $C^{ast}$ algebra i.e. ${mathcal Q} cong C(G)$ for some compact group $G$ acting smoothly on $M$. The goal of this paper is to prove the truth of this conjecture. A remarkable aspect of the proof is the use of probabilistic techniques involving Brownian stopping time.
The spectral functor of an ergodic action of a compact quantum group G on a unital C*-algebra is quasitensor, in the sense that the tensor product of two spectral subspaces is isometrically contained in the spectral subspace of the tensor product representation, and the inclusion maps satisfy natural properties. We show that any quasitensor *-functor from Rep(G) to the category of Hilbert spaces is the spectral functor of an ergodic action of G on a unital C*-algebra. As an application, we associate an ergodic G-action on a unital C*-algebra to an inclusion of Rep(G) into an abstract tensor C*-category. If the inclusion arises from a quantum subgroup of G, the associated G-system is just the quantum quotient space. If G is a group and the category has permutation symmetry, the associated system is commutative, and therefore isomorphic to the classical quotient space by a closed subgroup of $G$. If a tensor C*-category has a Hecke symmetry making an object of dimension d and q-quantum determinant one then there is an ergodic action of S_qU(d) on a unital C*-algebra, having the spaces of intertwiners from the tensor unit to powers of the object as its spectral subspaces. The special case od S_qU(2) is discussed.
Suppose that a compact quantum group $clq$ acts faithfully on a smooth, compact, connected manifold $M$, i.e. has a $C^*$ (co)-action $alpha$ on $C(M)$, such that the action $alpha$ is isometric in the sense of cite{Goswami} for some Riemannian structure on $M$. We prove that $clq$ must be commutative as a $C^{ast}$ algebra i.e. $clqcong C(G)$ for some compact group $G$ acting smoothly on $M$. In particular, the quantum isometry group of $M$ (in the sense of cite{Goswami}) coincides with $C(ISO(M))$.
We use a tensor C*-category with conjugates and two quasitensor functors into the category of Hilbert spaces to define a *-algebra depending functorially on this data. If one of them is tensorial, we can complete in the maximal C*-norm. A particular case of this construction allows us to begin with solutions of the conjugate equations and associate ergodic actions of quantum groups on the C*-algebra in question. The quantum groups involved are A_u(Q) and B_u(Q).
162 - Pekka Salmi , Adam Skalski 2015
Actions of locally compact groups and quantum groups on W*-ternary rings of operators are discussed and related crossed products introduced. The results generalise those for von Neumann algebraic actions with proofs based mostly on passing to the linking von Neumann algebra. They are motivated by the study of fixed point spaces for convolution operators generated by contractive, non-necessarily positive measures, both in the classical and in the quantum context.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا