No Arabic abstract
We present a CARMA 1.3 mm continuum survey toward 9 Class 0 protostars in the Perseus molecular cloud at $sim$0.3$^{primeprime}$ (70 AU) resolution. This study approximately doubles the number of Class 0 protostars observed with spatial resolutions $<$ 100 AU at millimeter wavelengths, enabling the presence of protostellar disks and proto-binary systems to be probed. We detect flattened structures with radii $>$ 100 AU around 2 sources (L1448 IRS2 and Per-emb-14) and these sources may be strong disk candidates. Marginally-resolved structures with position angles within 30$^{circ}$ of perpendicular to the outflow are found toward 3 protostars (L1448 IRS3C, IRAS 03282+3035, and L1448C) and are considered disk candidates. Two others (L1448 IRS3B and IRAS 03292+3039) have resolved structure, possibly indicative of massive inner envelopes or disks; L1448 IRS3B also has a companion separated by 0.9$^{primeprime}$ ($sim$210 AU). IC348-MMS does not have well-resolved structure and the candidate first hydrostatic core L1451-MMS is marginally resolved on 1$^{primeprime}$ scales. The strong disk candidate sources were followed-up with C$^{18}$O ($J=2rightarrow1$) observations, detecting velocity gradients consistent with rotation, but it is unclear if the rotation is Keplerian. We compare the observed visibility amplitudes to radiative transfer models, finding that visibility amplitude ratios suggest a compact component (possibly a disk) is necessary for 5 of 9 Class 0 sources; envelopes alone may explain the other 4 systems. We conclude that there is evidence for the formation of large disks in the Class 0 phase with a range of radii and masses dependent upon their initial formation conditions.
We present high angular resolution 1.3 mm and 850 um dust continuum data obtained with the Submillimeter Array toward 33 Class 0 protostars in nearby clouds (distance < 500 pc), which represents so far the largest survey toward protostellar binary/multiple systems. The median angular resolution in the survey is 2.5 arcsec, while the median linear resolution is approximately 600 AU. Compact dust continuum emission is observed from all sources in the sample. Twenty-one sources in the sample show signatures of binarity/multiplicity, with separations ranging from 50 to 5000 AU. The numbers of singles, binaries, triples, and quadruples in the sample are 12, 14, 5, and 2, respectively. The derived multiplicity frequency (MF) and companion star fraction (CSF) for Class 0 protostars are 0.64+/-0.08 and 0.91+/-0.05, respectively, with no correction for completeness. The derived MF and CSF in this survey are approximately two times higher than the values found in the binary surveys toward Class I YSOs, and approximately three (for MF) and four (for CSF) times larger than the values found among MS stars, with a similar range of separations. Furthermore, the observed fraction of high order multiple systems to binary systems in Class 0 protostars (0.50+/-0.09) is also larger than the fractions found in Class I YSOs (0.31+/-0.07) and MS stars (< 0.2). These results suggest that binary properties evolve as protostars evolve, as predicted by numerical simulations. The distribution of separations for Class 0 protostellar binary systems shows a general trend in which companion star fraction increases with decreasing companion separation. We find that 67%+/-8% of the protobinary systems have circumstellar mass ratios below 0.5, implying that unequal-mass systems are preferred in the process of binary star formation. We suggest an empirical sequential fragmentation picture for binary star formation.
The formation epoch of protostellar disks is debated because of the competing roles of rotation, turbulence, and magnetic fields in the early stages of low-mass star formation. Magnetohydrodynamics simulations of collapsing cores predict that rotationally supported disks may form in strongly magnetized cores through ambipolar diffusion or misalignment between the rotation axis and the magnetic field orientation. Detailed studies of individual sources are needed to cross check the theoretical predictions. We present 0.06-0.1 resolution images at 350 GHz toward B1b-N and B1b-S, which are young class 0 protostars, possibly first hydrostatic cores. The images have been obtained with ALMA, and we compare these data with magnetohydrodynamics simulations of a collapsing turbulent and magnetized core. The submillimeter continuum emission is spatially resolved by ALMA. Compact structures with optically thick 350 GHz emission are detected toward both B1b-N and B1b-S, with 0.2 and 0.35 radii (46 and 80 au at the Perseus distance of 230 pc), within a more extended envelope. The flux ratio between the compact structure and the envelope is lower in B1b-N than in B1b-S, in agreement with its earlier evolutionary status. The size and orientation of the compact structure are consistent with 0.2 resolution 32 GHz observations obtained with the Very Large Array as a part of the VANDAM survey, suggesting that grains have grown through coagulation. The morphology, temperature, and densities of the compact structures are consistent with those of disks formed in numerical simulations of collapsing cores. Moreover, the properties of B1b-N are consistent with those of a very young protostar, possibly a first hydrostatic core. These observations provide support for the early formation of disks around low-mass protostars.
We investigate the possibility of the growth of magnetorotational instability (MRI) in disks around Class 0 protostars. We construct a disk model and calculate the chemical reactions of neutral and charged atoms, molecules and dust grains to derive the abundance of each species and the ionization degree of the disk. Then, we estimate the diffusion coefficients of non-ideal magnetohydrodynamics effects such as ohmic dissipation, ambipolar diffusion and the Hall effect. Finally, we evaluate the linear growth rate of MRI in each area of the disk. We investigate the effect of changes in the strength and direction of the magnetic field in our disk model and we adopt four different dust models to investigate the effect of dust size distribution on the diffusion coefficients. Our results indicate that an MRI active region possibly exists with a weak magnetic field in a region far from the protostar where the Hall effect plays a role in the growth of MRI. On the other hand, in all models the disk is stable against MRI in the region within $<20$ au from the protostar on the equatorial plane. Since the size of the disks in the early stage of star formation is limited to $lesssim 10-$$20$ au, it is difficult to develop MRI-driven turbulence in such disks.
We use PACS and SPIRE continuum data at 160 um, 250 um, 350 um, and 500 um from the Herschel Gould Belt Survey to sample seven clumps in Perseus: B1, B1-E, B5, IC348, L1448, L1455, and NGC1333. Additionally, we identify and characterize the embedded Class 0 protostars using detections of compact Herschel sources at 70 um as well as archival Spitzer catalogues and SCUBA 850 um photometric data. We identify 28 candidate Class 0 protostars, four of which are newly discovered sources not identified with Spitzer. We find that the star formation efficiency of clumps, as traced by Class 0 protostars, correlates strongly with the flatness of their respective column density distributions at high values. This correlation suggests that the fraction of high column density material in a clump reflects only its youngest protostellar population rather than its entire source population. We propose that feedback from either the formation or evolution of protostars changes the local density structure of clumps.
We present the first dust emission results toward a sample of seven protostellar disk candidates around Class 0 and I sources in the Perseus molecular cloud from the VLA Nascent Disk and Multiplicity (VANDAM) survey with ~0.05 or 12 AU resolution. To examine the surface brightness profiles of these sources, we fit the Ka-band 8 mm dust-continuum data in the u,v-plane to a simple, parametrized model based on the Shakura-Sunyaev disk model. The candidate disks are well-fit by a model with a disk-shaped profile and have masses consistent with known Class 0 and I disks. The inner-disk surface densities of the VANDAM candidate disks have shallower density profiles compared to disks around more evolved Class II systems. The best-fit model radii of the seven early-result candidate disks are R_c > 10 AU; at 8 mm, the radii reflect lower limits on the disk size since dust continuum emission is tied to grain size and large grains radially drift inwards. These relatively large disks, if confirmed kinematically, are inconsistent with theoretical models where the disk size is limited by strong magnetic braking to < 10 AU at early times.