Do you want to publish a course? Click here

Constraints on Type IIn Supernova Progenitor Outbursts from the Lick Observatory Supernova Search

473   0   0.0 ( 0 )
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We searched through roughly 12 years of archival survey data acquired by the Katzman Automatic Imaging Telescope (KAIT) as part of the Lick Observatory Supernova Search (LOSS) in order to detect or place limits on possible progenitor outbursts of Type IIn supernovae (SNe~IIn). The KAIT database contains multiple pre-SN images for 5 SNe~IIn (plus one ambiguous case of a SN IIn/imposter) within 50 Mpc. No progenitor outbursts are found using the false discovery rate (FDR) statistical method in any of our targets. Instead, we derive limiting magnitudes (LMs) at the locations of the SNe. These limiting magnitudes (typically reaching $m_R approx 19.5,mathrm{mag}$) are compared to outbursts of SN 2009ip and $eta$ Car, plus additional simulated outbursts. We find that the data for SN 1999el and SN 2003dv are of sufficient quality to rule out events $sim40$ days before the main peak caused by initially faint SNe from blue supergiant (BSG) precursor stars, as in the cases of SN 2009ip and SN 2010mc. These SNe~IIn may thus have arisen from red supergiant progenitors, or they may have had a more rapid onset of circumstellar matter interaction. We also estimate the probability of detecting at least one outburst in our dataset to be $gtrsim60%$ for each type of the example outbursts, so the lack of any detections suggests that such outbursts are either typically less luminous (intrinsically or owing to dust) than $sim -13,mathrm{mag}$, or not very common among SNe~IIn within a few years prior to explosion.



rate research

Read More

137 - Jesse Leaman 2010
This is the first paper of a series in which we present new measurements of the observed rates of supernovae (SNe) in the local Universe, determined from the Lick Observatory Supernova Search (LOSS). We have obtained 2.3 million observations of 14,882 sample galaxies over an interval of 11 years (March 1998 through Dec. 2008). We considered 1036 SNe detected in our sample and used an optimal subsample of 726 SNe (274 SNe~Ia, 116 SNe~Ibc, 324 SNe~II) to determine our SN rates. This is the largest and most homogeneous set of nearby SNe ever assembled for this purpose, and ours is the first local SN rate analysis based on CCD imaging and modern image-subtraction techniques. In this paper, we lay the foundation of the study. We derive the recipe for the control-time calculation for SNe with a known luminosity function, and provide details on the construction of the galaxy and SN samples used in the calculations. Compared with a complete volume-limited galaxy sample, our sample has a deficit of low-luminosity galaxies but still provides enough statistics for a reliable rate calculation. There is a strong Malmquist bias, so the average size (luminosity or mass) of the galaxies increases monotonically with distance, and this trend is used to showcase a correlation between SN rates and galaxy sizes. Very few core-collapse SNe are found in early-type galaxies, providing strong constraints on the amount of recent star formation within these galaxies. The small average observation interval ($sim 9$ days) of our survey ensures that our control-time calculations can tolerate a reasonable amount of uncertainty in the luminosity functions of SNe. We perform Monte Carlo simulations to determine the limiting magnitude of each image and the SN detection efficiency as a function of galaxy Hubble type ... (abridged)
We present BVRI and unfiltered light curves of 93 Type Ia supernovae (SNe Ia) from the Lick Observatory Supernova Search (LOSS) follow-up program conducted between 2005 and 2018. Our sample consists of 78 spectroscopically normal SNe Ia, with the remainder divided between distinct subclasses (three SN 1991bg-like, three SN 1991T-like, four SNe Iax, two peculiar, and three super-Chandrasekhar events), and has a median redshift of 0.0192. The SNe in our sample have a median coverage of 16 photometric epochs at a cadence of 5.4 days, and the median first observed epoch is ~4.6 days before maximum B-band light. We describe how the SNe in our sample are discovered, observed, and processed, and we compare the results from our newly developed automated photometry pipeline to those from the previous processing pipeline used by LOSS. After investigating potential biases, we derive a final systematic uncertainty of 0.03 mag in BVRI for our dataset. We perform an analysis of our light curves with particular focus on using template fitting to measure the parameters that are useful in standardising SNe Ia as distance indicators. All of the data are available to the community, and we encourage future studies to incorporate our light curves in their analyses.
136 - Weidong Li 2010
This is the third paper of a series in which we present new measurements of the observed rates of supernovae (SNe) in the local Universe, determined from the Lick Observatory Supernova Search (LOSS). We have considered a sample of about 1000 SNe and used an optimal subsample of 726 SNe (274 SNe Ia, 116 SNe Ibc, and 324 SNe II) to determine our rates. We study the trend of the rates as a function of a few quantities available for our galaxy sample, such as luminosity in the B and K bands, stellar mass, and morphological class. We discuss different choices (SN samples, input SN luminosity functions, inclination correction factors) and their effect on the rates and their uncertainties. A comparison between our SN rates and the published measurements shows that they are consistent with each other to within uncertainties when the rate calculations are done in the same manner. Nevertheless, our data demonstrate that the rates cannot be adequately described by a single parameter using either galaxy Hubble types or B - K colours. A secondary parameter in galaxy size, expressed by luminosity or stellar mass, is needed to adequately describe the rates in the rate-size relation: the galaxies of smaller sizes have higher SN rates per unit mass or per unit luminosity. The trends of the SN rates in galaxies of different Hubble types and colours are discussed. We examine possible causes for the rate-size relation. Physically, such a relation for the core-collapse SNe is probably linked to the correlation between the specific star-formation rate and the galaxy sizes, but it is not clear whether the same link can be established for SNe Ia. We discuss the two-component (tardy and prompt) model for SN Ia rates, and find that the SN Ia rates in young stellar populations might have a strong correlation with the core-collapse SN rates. We derive volumetric and Milky Way rates ... (abridged)
We present a sample of supernovae Type IIn (SNe IIn) from the untargeted, magnitude-limited surveys of the Palomar Transient Factory (PTF) and its successor, the intermediate PTF (iPTF). The SNe IIn found and followed by the PTF/iPTF were used to select a sample of 42 events with useful constraints on the rise times as well as with available post-peak photometry. The sample SNe were discovered in 2009-2016 and have at least one low-resolution classification spectrum, as well as photometry from the P48 and P60 telescopes at Palomar Observatory. We study the light-curve properties of these SNe IIn using spline fits (for the peak and the declining portion) and template matching (for the rising portion). We find that the typical rise times are divided into fast and slow risers at $20pm6$ d and $50pm11$ d, respectively. The decline rates are possibly divided into two clusters, but this division has weak statistical significance. We find no significant correlation between the peak luminosity of SNe IIn and their rise times, but the more luminous SNe IIn are generally found to be more long-lasting. Slowly rising SNe IIn are generally found to decline slowly. The SNe in our sample were hosted by galaxies of absolute magnitude $-22 lesssim M_g lesssim -13$ mag. The K-corrections at light-curve peak of the SNe IIn in our sample are found to be within 0.2 mag for the observers frame $r$-band, for SNe at redshifts $z < 0.25$. By applying K-corrections and also including ostensibly superluminous SNe IIn, we find that the peak magnitudes are $M_{rm peak}^{r} = -19.18pm1.32$ mag. We conclude that the occurrence of conspicuous light-curve bumps in SNe IIn, such as in iPTF13z, are limited to $1.4^{+14.6}_{-1.0} %$ of the SNe IIn. We also investigate a possible sub-type of SNe IIn with a fast rise to a $gtrsim 50$ d plateau followed by a slow, linear decline.
151 - Weidong Li 2010
This is the second paper of a series in which we present new measurements of the observed rates of supernovae (SNe) in the local Universe, determined from the Lick Observatory Supernova Search (LOSS). In this paper, a complete SN sample is constructed, and the observed (uncorrected for host-galaxy extinction) luminosity functions (LFs) of SNe are derived. These LFs solve two issues that have plagued previous rate calculations for nearby SNe: the luminosity distribution of SNe and the host-galaxy extinction. We select a volume-limited sample of 175 SNe, collect photometry for every object, and fit a family of light curves to constrain the peak magnitudes and light-curve shapes. The volume-limited LFs show that they are not well represented by a Gaussian distribution. There are notable differences in the LFs for galaxies of different Hubble types (especially for SNe Ia). We derive the observed fractions for the different subclasses in a complete SN sample, and find significant fractions of SNe II-L (10%), IIb (12%), and IIn (9%) in the SN II sample. Furthermore, we derive the LFs and the observed fractions of different SN subclasses in a magnitude-limited survey with different observation intervals, and find that the LFs are enhanced at the high-luminosity end and appear more standard with smaller scatter, and that the LFs and fractions of SNe do not change significantly when the observation interval is shorter than 10 days. We also discuss the LFs in different galaxy sizes and inclinations, and for different SN subclasses. Some notable results are ... (abridged).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا