No Arabic abstract
We have obtained H$alpha$ high spatial and time resolution observations of the upper solar chromosphere and supplemented these with multi-wavelength observations from the Solar Dynamic Observatory (SDO) and the {it Hinode} ExtremeUltraviolet Imaging Spectrometer (EIS). The H$alpha$ observations were conducted on 11 February 2012 with the Hydrogen-Alpha Rapid Dynamics Camera (HARDcam) instrument at the National Solar Observatorys Dunn Solar Telescope. Our H$alpha$ observations found large downflows of chromospheric material returning from coronal heights following a failed prominence eruption. We have detected several large condensations (blobs) returning to the solar surface at velocities of $approx$200 km s$^{-1}$ in both H$alpha$ and several SDO AIA band passes. The average derived size of these blobs in H$alpha$ is 500 by 3000 km$^2$ in the directions perpendicular and parallel to the direction of travel, respectively. A comparison of our blob widths to those found from coronal rain, indicate there are additional smaller, unresolved blobs in agreement with previous studies and recent numerical simulations. Our observed velocities and decelerations of the blobs in both H$alpha$ and SDO bands are less than those expected for gravitational free-fall and imply additional magnetic or gas pressure impeding the flow. We derived a kinetic energy $approx$2 orders of magnitude lower for the main eruption than a typical CME, which may explain its partial nature.
We report on the first simultaneous observation of an H-alpha Moreton wave, the corresponding EUV fast coronal waves, and a slow and bright EUV wave (typical EIT wave). Associated with an X6.9 flare that occurred on 2011 August 9 at the active region NOAA 11263, we observed a Moreton wave in the H-alpha images taken by the Solar Magnetic Activity Research Telescope (SMART) at Hida Observatory of Kyoto University. In the EUV images obtained by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory (SDO) we found not only the corresponding EUV fast bright coronal wave, but also the EUV fast faint wave that is not associated with the H-alpha Moreton wave. We also found a slow EUV wave, which corresponds to a typical EIT wave. Furthermore, we observed, for the first time, the oscillations of a prominence and a filament, simultaneously, both in the H-alpha and EUV images. To trigger the oscillations by the flare-associated coronal disturbance, we expect a coronal wave as fast as the fast-mode MHD wave with the velocity of about 570 - 800 km/s. These velocities are consistent with those of the observed Moreton wave and the EUV fast coronal wave.
On 17 January 2010, STEREO-B observed in extreme ultraviolet (EUV) and white light a large-scale dome-shaped expanding coronal transient with perfectly connected off-limb and on-disk signatures. Veronig et al. (2010, ApJL 716, 57) concluded that the dome was formed by a weak shock wave. We have revealed two EUV components, one of which corresponded to this transient. All of its properties found from EUV, white light, and a metric type II burst match expectations for a freely expanding coronal shock wave including correspondence to the fast-mode speed distribution, while the transient sweeping over the solar surface had a speed typical of EUV waves. The shock wave was presumably excited by an abrupt filament eruption. Both a weak shock approximation and a power-law fit match kinematics of the transient near the Sun. Moreover, the power-law fit matches expansion of the CME leading edge up to 24 solar radii. The second, quasi-stationary EUV component near the dimming was presumably associated with a stretched CME structure; no indications of opening magnetic fields have been detected far from the eruption region.
Solar spicules are chromospheric fibrils that appear everywhere on the Sun, yet their origin is not understood. Using high resolution observations of spicules obtained with the Swedish 1-m Solar Telescope, we aim to understand how spicules appear in filtergrams and Dopplergrams, how they compare in Ca II H and H-alpha, and what can make them appear and disappear. We find thatspicules display a rich and detailed spatial structure, and show a distribution of transverse velocities that when aligned with the line of sight can make them appear at different H-alpha wing positions. They become more abundant at positions closer to the line core, reflecting a distribution of Doppler shifts and widths. In H-alpha width maps they stand out as bright features both on disk and off limb, reflecting their large Doppler motions and possibly higher temperatures than in the typical H-alpha formation region. Spicule lifetimes measured from narrowband images at only a few positions will be an underestimate because Doppler shifts can make them disappear prematurely from such images; for such cases, width maps are a more robust tool. In H-alpha and Ca II H filtergrams, off limb spicules essentially have the same properties, appearance, and evolution. We find that the sudden appearance of spicules can be explained by Doppler shifts from their transverse motions, and does not require other convoluted explanations.
On 2014 October 30, a band-splitted type II radio burst associated with a coronal mass ejection (CME) observed by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory (SDO) occurred over the southeast limb of the Sun. The fast expansion in all directions of the plasma front acted as a piston and drove a spherical fast shock ahead of it, whose outward progression was traced by simultaneous images obtained with the Nanc{c}ay Radioheliograph (NRH). The geometry of the CME/shock event was recovered through 3D modeling, given the absence of concomitant stereoscopic observations, and assuming that the band-splitted type II burst was emitted at the intersection of the shock surface with two adjacent low-Alfven speed coronal streamers. From the derived spatiotemporal evolution of the standoff distance between shock and CME leading edge, we were finally able to infer the magnetic field strength $B$ in the inner corona. A simple radial profile of the form $B(r) = (12.6 pm 2.5) r^{-4}$ nicely fits our results, together with previous estimates, in the range $r = 1.1-2.0$ solar radii.
The recent discovery of impulsive solar burst emission in the 30 THz band is raising new interpretation challenges. One event associated with a GOES M2 class flare has been observed simultaneously in microwaves, H-alpha, EUV, and soft X-ray bands. Although these new observations confirm some features found in the two prior known events, they exhibit time profile structure discrepancies between 30 THz, microwaves, and hard X-rays (as inferred from the Neupert effect). These results suggest a more complex relationship between 30 THz emission and radiation produced at other wavelength ranges. The multiple frequency emissions in the impulsive phase are likely to be produced at a common flaring site lower in the chromosphere. The 30 THz burst emission may be either part of a nonthermal radiation mechanism or due to the rapid thermal response to a beam of high-energy particles bombarding the dense solar atmosphere.