No Arabic abstract
We investigate the heat conductivity $kappa$ of the Heisenberg spin-1/2 ladder at finite temperature covering the entire range of inter-chain coupling $J_perp$, by using several numerical methods and perturbation theory within the framework of linear response. We unveil that a perturbative prediction $kappa propto J_perp^{-2}$, based on simple golden-rule arguments and valid in the strict limit $J_perp to 0$, applies to a remarkably wide range of $J_perp$, qualitatively and quantitatively. In the large $J_perp$-limit, we show power-law scaling of opposite nature, namely, $kappa propto J_perp^2$. Moreover, we demonstrate the weak and strong coupling regimes to be connected by a broad minimum, slightly below the isotropic point at $J_perp = J_parallel$. As a function of temperature $T$, this minimum scales as $kappa propto T^{-2}$ down to $T$ on the order of the exchange coupling constant. These results provide for a comprehensive picture of $kappa(J_perp,T)$ of spin ladders.
Cu(C$_8$H$_6$N$_2$)Cl$_2$, a strong-rung spin-1/2 Heisenberg ladder compound, is probed by means of electron spin resonance (ESR) spectroscopy in the field-induced gapless phase above $H_{c1}$. The temperature dependence of the ESR linewidth is analyzed in the quantum field theory framework, suggesting that the anisotropy of magnetic interactions plays a crucial role, determining the peculiar low-temperature ESR linewidth behavior. In particular, it is argued that the uniform Dzyaloshinskii-Moriya interaction (which is allowed on the bonds along the ladder legs) can be the source of this behavior in Cu(C$_8$H$_6$N$_2$)Cl$_2$.
The ground state spin-wave excitations and thermodynamic properties of two types of ferrimagnetic chains are investigated: the alternating spin-1/2 spin-5/2 chain and a similar chain with a spin-1/2 pendant attached to the spin-5/2 site. Results for magnetic susceptibility, magnetization and specific heat are obtained through the finite-temperature Lanczos method with the aim in describing available experimental data, as well as comparison with theoretical results from the semiclassical approximation and the low-temperature susceptibility expansion derived from Takahashis modified spin-wave theory. In particular, we study in detail the temperature vs. magnetic field phase diagram of the spin-1/2 spin-5/2 chain, in which several low-temperature quantum phases are identified: the Luttinger Liquid phase, the ferrimagnetic plateau and the fully polarized one, and the respective quantum critical points and crossover lines.
We investigate the spin-1/2 Heisenberg model on a rectangular lattice, using the Gutzwiller projected variational wave function known as the staggered flux state. Using Monte Carlo techniques, the variational parameters and static spin-structure factor for different coupling anisotropies $gamma=J_y/J_x$ are calculated. We observe a gradual evolution of the ground state energy towards a value which is very close to the 1D estimate provided by the Bethe ansatz and a good agreement between the finite size scaling of the energies. The spin-spin correlation functions exhibit a power-law decay with varying exponents for different anisotropies. Though the lack of Neel order makes the staggered flux state energetically unfavorable in the symmetric case $gamma=1$, it appears to capture the essence of the system close to 1D. Hence we believe that the staggered flux state provides an interesting starting point to explore the crossover from quantum disordered chains to the Neel ordered 2D square lattices.
We study the spin-1 XY model on a hypercubic lattice in $d$ dimensions and show that this well-known nonintegrable model hosts an extensive set of anomalous finite-energy-density eigenstates with remarkable properties. Namely, they exhibit subextensive entanglement entropy and spatiotemporal long-range order, both believed to be impossible in typical highly excited eigenstates of nonintegrable quantum many-body systems. While generic initial states are expected to thermalize, we show analytically that the eigenstates we construct lead to weak ergodicity breaking in the form of persistent oscillations of local observables following certain quantum quenches--in other words, these eigenstates provide an archetypal example of so-called quantum many-body scars. This work opens the door to the analytical study of the microscopic origin, dynamical signatures, and stability of such phenomena.
We determine dynamical response functions of the S=1/2 Heisenberg quantum antiferromagnet on the kagome lattice based on large-scale exact diagonalizations combined with a continued fraction technique. The dynamical spin structure factor has important spectral weight predominantly along the boundary of the extended Brillouin zone and energy scans reveal broad response extending over a range of 2 sim 3J concomitant with pronounced intensity at lowest available energies. Dispersive features are largely absent. Dynamical singlet correlations -- which are relevant for inelastic light probes -- reveal a similar broad response, with a high intensity at low frequencies omega/J lesssim 0.2J. These low energy singlet excitations do however not seem to favor a specific valence bond crystal, but instead spread over many symmetry allowed eigenstates.