Do you want to publish a course? Click here

Spectroscopy of $eta$-nucleus bound states at GSI and FAIR --- very preliminary results and future prospects ---

114   0   0.0 ( 0 )
 Added by Hiroyuki Fujioka
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

The possible existence of eta-nucleus bound states has been put forward through theoretical and experimental studies. It is strongly related to the eta mass at finite density, which is expected to be reduced because of the interplay between the $U_A(1)$ anomaly and partial restoration of chiral symmetry. The investigation of the C(p,d) reaction at GSI and FAIR, as well as an overview of the experimental program at GSI and future plans at FAIR are discussed.



rate research

Read More

The mass of the {eta} meson is theoretically expected to be reduced at finite density, which indicates the existence of {eta}-nucleus bound states. To investigate these states, we perform missing-mass spectroscopy for the (p, d) reaction near the {eta} production threshold. The overview of the experimental situation is given and the current status is discussed.
157 - V. Metag , M. Nanova , 2017
Recent experiments studying the meson-nucleus interaction to extract meson-nucleus potentials are reviewed. The real part of the potentials quantifies whether the interaction is attractive or repulsive while the imaginary part describes the meson absorption in nuclei. The review is focused on mesons which are sufficiently long-lived to potentially form meson-nucleus quasi-bound states. The presentation is confined to meson production off nuclei in photon-, pion-, proton-, and light-ion induced reactions and heavy-ion collisions at energies near the production threshold. Tools to extract the potential parameters are presented. In most cases, the real part of the potential is determined by comparing measured meson momentum distributions or excitation functions with collision model or transport model calculations. The imaginary part is extracted from transparency ratio measurements. Results on $K^+, K^0, K^-, eta, eta^prime, omega$, and $phi$ mesons are presented and compared with theoretical predictions. The interaction of $K^+$ and $K^0$ mesons with nuclei is found to be weakly repulsive, while the $K^-, eta,eta^prime, omega$ and $phi$ meson-nucleus potentials are attractive, however, with widely different strengths. Because of meson absorption in the nuclear medium the imaginary parts of the meson-nucleus potentials are all negative, again with a large spread. An outlook on planned experiments in the charm sector is given. In view of the determined potential parameters, the criteria and chances for experimentally observing meson-nucleus quasi-bound states are discussed. The most promising candidates appear to be the $eta$ and $eta^prime$ mesons.
The TRB hardware module is a multi-purpose Trigger and Readout Board with on-board DAQ functionality developed for the upgrade of the HADES experiment. It contains a single computer chip (Etrax) running Linux as a well as a 100 Mbit/s Ethernet interface. It has been orginally designed to work as a 128-channel Time to Digital Converter based on the HPTDC chip from CERN. The new version contains a 2 Gbit/s optical link and an interface connector (15 Gbit/s) in order to realize an add-on card concept which makes the hardware very flexible. Moreover, an FPGA chip (Xilinx, Virtex 4 LX 40) and a TigerSharc DSP provide new computing resources which can be used to run on-line analysis algorithms. The TRB is proposed as a prototype for new modules for the planned detector systems PANDA and CBM at the future FAIR facility at GSI-Darmstadt.
We present a detailed phenomenological study of the prospects of open charm physics at the future $bar{p}p$ and $pp$ facilities GSI-FAIR and J-PARC, respectively. In particular, we concentrate on differential cross sections and the charge and longitudinal double-spin asymmetries at next-to-leading order accuracy. Theoretical uncertainties for the proposed observables are estimated by varying the charm quark mass and the renormalization and factorization scales.
The HypHI collaboration aims to perform a precise hypernuclear spectroscopy with stable heavy ion beams and rare isotope beams at GSI and fAIR in order to study hypernuclei at extreme isospin, especially neutron rich hypernuclei to look insight hyperon-nucleon interactions in the neutron rich medium, and hypernuclear magnetic moments to investigate baryon properties in the nuclei. We are currently preparing for the first experiment with $^6$Li and $^{12}$C beams at 2 AGeV to demonstrate the feasibility of a precise hypernuclear spectroscopy by identifying $^{3}_{Lambda}$H, $^{4}_{Lambda}$H and $^{5}_{Lambda}$He. The first physics experiment on these hypernuclei is planned for 2009. In the present document, an overview of the HypHI project and the details of this first experiment will be discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا