Do you want to publish a course? Click here

First Results from High Angular Resolution ALMA Observations Toward the HL Tau Region

97   0   0.0 ( 0 )
 Added by Catherine Vlahakis
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present Atacama Large Millimeter/submillimeter Array (ALMA) observations from the 2014 Long Baseline Campaign in dust continuum and spectral line emission from the HL Tau region. The continuum images at wavelengths of 2.9, 1.3, and 0.87 mm have unprecedented angular resolutions of 0.075 arcseconds (10 AU) to 0.025 arcseconds (3.5 AU), revealing an astonishing level of detail in the circumstellar disk surrounding the young solar analogue HL Tau, with a pattern of bright and dark rings observed at all wavelengths. By fitting ellipses to the most distinct rings, we measure precise values for the disk inclination (46.72pm0.05 degrees) and position angle (+138.02pm0.07 degrees). We obtain a high-fidelity image of the 1.0 mm spectral index ($alpha$), which ranges from $alphasim2.0$ in the optically-thick central peak and two brightest rings, increasing to 2.3-3.0 in the dark rings. The dark rings are not devoid of emission, we estimate a grain emissivity index of 0.8 for the innermost dark ring and lower for subsequent dark rings, consistent with some degree of grain growth and evolution. Additional clues that the rings arise from planet formation include an increase in their central offsets with radius and the presence of numerous orbital resonances. At a resolution of 35 AU, we resolve the molecular component of the disk in HCO+ (1-0) which exhibits a pattern over LSR velocities from 2-12 km/s consistent with Keplerian motion around a ~1.3 solar mass star, although complicated by absorption at low blue-shifted velocities. We also serendipitously detect and resolve the nearby protostars XZ Tau (A/B) and LkHa358 at 2.9 mm.

rate research

Read More

The mechanism behind the shaping of bipolar planetary nebulae is still poorly understood. Accurately tracing the molecule-rich equatorial regions of post-AGB stars can give valuable insight into the ejection mechanisms at work. We investigate the physical conditions, structure and velocity field of the dense molecular region of the planetary nebula NGC 6302 by means of ALMA band 7 interferometric maps. The high spatial resolution of the $^{12}$CO and $^{13}$CO J=3-2 ALMA data allows for an analysis of the geometry of the ejecta in unprecedented detail. We built a spatio-kinematical model of the molecular region with the software SHAPE and performed detailed non-LTE calculations of excitation and radiative transfer with the SHAPEMOL plug-in. We find that the molecular region consists of a massive ring out of which a system of fragments of lobe walls emerge and enclose the base of the lobes visible in the optical. The general properties of this region are in agreement with previous works, although the much greater spatial resolution of the data allows for a very detailed description. We confirm that the mass of the molecular region is 0.1 M$_{odot}$. Additionally, we report a previously undetected component at the nebular equator, an inner, younger ring inclined $sim$60$^circ$ with respect to the main ring, showing a characteristic radius of 7.5$times$10$^{16}$ cm, a mass of 2.7$times$10$^{-3}$ M$_{odot}$, and a counterpart in optical images of the nebula. This inner ring has the same kinematical age as the northwest optical lobes, implying it was ejected approximately at the same time, hundreds of years after the ejection of the bulk of the molecular ring-like region. We discuss a sequence of events leading to the formation of the molecular and optical nebulae, and briefly speculate on the origin of this intriguing inner ring.
We present ALMA 850 $mu$m continuum observations of the Orion Nebula Cluster that provide the highest angular resolution ($sim 0rlap{.}1 approx 40$ AU) and deepest sensitivity ($sim 0.1$ mJy) of the region to date. We mosaicked a field containing $sim 225$ optical or near-IR-identified young stars, $sim 60$ of which are also optically-identified proplyds. We detect continuum emission at 850 $mu$m towards $sim 80$% of the proplyd sample, and $sim 50$% of the larger sample of previously-identified cluster members. Detected objects have fluxes of $sim 0.5$-80 mJy. We remove sub-mm flux due to free-free emission in some objects, leaving a sample of sources detected in dust emission. Under standard assumptions of isothermal, optically thin disks, sub-mm fluxes correspond to dust masses of $sim 0.5$ to 80 Earth masses. We measure the distribution of disk sizes, and find that disks in this region are particularly compact. Such compact disks are likely to be significantly optically thick. The distributions of sub-mm flux and inferred disk size indicate smaller, lower-flux disks than in lower-density star-forming regions of similar age. Measured disk flux is correlated weakly with stellar mass, contrary to studies in other star forming regions that found steeper correlations. We find a correlation between disk flux and distance from the massive star $theta^1$ Ori C, suggesting that disk properties in this region are influenced strongly by the rich cluster environment.
An overview is presented of the recent advances in understanding the B[e] phenomenon among blue supergiant stars in light of high-angular resolution observations and with an emphasis on the results obtained by means of long baseline optical stellar interferometry. The focus of the review is on the circumstellar material and evolutionary phase of B[e] supergiants, but recent results on dust production in regular blue supergiants are also highlighted.
First results of near-IR adaptive optics (AO)-assisted imaging, interferometry, and spectroscopy of this Luminous Blue Variable (LBV) are presented. They suggest that the Pistol Star is at least double. If the association is physical, it would reinforce questions concerning the importance of multiplicity for the formation and evolution of extremely massive stars.
Deuterium fractionation is dependent on various physical and chemical parameters. Thus, the formation location and thermal history of material in the solar system is often studied by measuring its D/H ratio. This requires knowledge about the deuteration processes operating during the planet formation era. We aim to study these processes by radially resolving the DCN/HCN (at 0.3 resolution) and N$_2$D$^+$/N$_2$H$^+$ (0.3 to 0.9) column density ratios toward the five protoplanetary disks observed by the Molecules with ALMA at Planet-forming scales (MAPS) Large Program. DCN is detected in all five sources, with one newly reported detection. N$_2$D$^+$ is detected in four sources, two of which are newly reported detections. We derive column density profiles that allow us to study the spatial variation of the DCN/HCN and N$_2$D$^+$/N$_2$H$^+$ ratios at high resolution. DCN/HCN varies considerably for different parts of the disks, ranging from $10^{-3}$ to $10^{-1}$. In particular, the inner disk regions generally show significantly lower HCN deuteration compared with the outer disk. In addition, our analysis confirms that two deuterium fractionation channels are active, which can alter the D/H ratio within the pool of organic molecules. N$_2$D$^+$ is found in the cold outer regions beyond $sim$50 au, with N$_2$D$^+$/N$_2$H$^+$ ranging between $10^{-2}$ and 1 across the disk sample. This is consistent with the theoretical expectation that N$_2$H$^+$ deuteration proceeds via the low-temperature channel only. This paper is part of the MAPS special issue of the Astrophysical Journal Supplement.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا