We present a theoretical analysis of different methods to synthesize entangled states of two superconducting resonators. These methods use experimentally demonstrated interactions of resonators with artificial atoms, and offer efficient routes to generate nonclassical states. We analyze the theoretical structure of these algorithms and their average performance for arbitrary states and for deterministically preparing NOON states. Using a new state synthesis algorithm, we show that NOON states can be prepared in a time linear in the desired photon number and without any state-selective interactions.