Generalized-ensemble simulations enable the study of complex adsorption scenarios of a coarse-grained model polymer near an attractive nanostring, representing an ultrathin nanowire. We perform canonical and microcanonical statistical analyses to investigate structural transitions of the polymer and discuss their dependence on the temperature and on model parameters such as effective wire thickness and attraction strength. The result is a complete hyperphase diagram of the polymer phases, whose locations and stability are influenced by the effective material properties of the nanowire and the strength of the thermal fluctuations. Major structural polymer phases in the adsorbed state include compact droplets attached to or wrapping around the wire, and tubelike conformations with triangular pattern that resemble ideal boron nanotubes. The classification of the transitions is performed by microcanonical inflection-point analysis.