No Arabic abstract
In order to study the origin of the architectures of low mass planetary systems, we perform numerical surveys of the evolution of pairs of coplanar planets in the mass range $(1-4) rmn{M}_{oplus}.$ These evolve for up to $2times10^7 rmn{yr}$ under a range of orbital migration torques and circularization rates assumed to arise through interaction with a protoplanetary disc. Near the inner disc boundary, significant variations of viscosity, interaction with density waves or with the stellar magnetic field could occur and halt migration, but allow ircularization to continue. This was modelled by modifying the migration and circularization rates. Runs terminated without an extended period of circularization in the absence of migration torques gave rise to either a collision, or a system close to a resonance. These were mostly first order with a few $%$ terminating in second order resonances. Both planetary eccentricities were small $< 0.1$ and all resonant angles liberated. This type of survey produced only a limited range of period ratios and cannot reproduce Kepler observations. When circularization alone operates in the final stages, divergent migration occurs causing period ratios to increase. Depending on its strength the whole period ratio range between $1$ and $2$ can be obtained. A few systems close to second order commensurabilities also occur. In contrast to when arising through convergent migration, resonant trapping does not occur and resonant angles circulate. Thus the behaviour of the resonant angles may indicate the form of migration that led to near resonance.
Planets close to their stars are thought to form farther out and migrate inward due to angular momentum exchange with gaseous protoplanetary disks. This process can produce systems of planets in co-orbital (Trojan or 1:1) resonance, in which two planets share the same orbit, usually separated by 60 degrees. Co-orbital systems are detectable among the planetary systems found by the Kepler mission either directly or by transit timing variations. However, no co-orbital systems have been found within the thousands of Kepler planets and candidates. Here we study the orbital evolution of co-orbital planets embedded in a protoplanetary disk using a grid-based hydrodynamics code. We show that pairs of similar-mass planets in co-orbital resonance are disrupted during large-scale orbital migration. Destabilization occurs when one or both planets is near the critical mass needed to open a gap in the gaseous disk. A confined gap is opened that spans the 60 degree azimuthal separation between planets. This alters the torques imparted by the disk on each planet -- pushing the leading planet outward and the trailing planet inward -- and disrupts the resonance. The mechanism applies to systems in which the two planets masses differ by a factor of two or less. In a simple flared disk model the critical mass for gap opening varies from a few Earth masses at the inner edge of the disk to 1 Saturn-mass at 5 AU. A pair of co-orbital planets with masses in this range that migrates will enter a region where the planets are at the gap-opening limit. At that point the resonance is disrupted. We therefore predict an absence of planets on co-orbital configurations with masses in the super-Earth to Saturn mass range with similar masses.
Outward migration of low-mass planets has recently been shown to be a possibility in non-barotropic disks. We examine the consequences of this result in evolutionary models of protoplanetary disks. Planet migration occurs towards equilibrium radii with zero torque. These radii themselves migrate inwards because of viscous accretion and photoevaporation. We show that as the surface density and temperature fall, the planet orbital migration and disk depletion timescales eventually become comparable, with the precise timing depending on the mass of the planet. When this occurs, the planet decouples from the equilibrium radius. At this time, however, the gas surface density is already too low to drive substantial further migration. A higher mass planet, of 10 Earth masses, can open a gap during the late evolution of the disk, and stops migrating. Low mass planets, with 1 or 0.1 Earth masses, released beyond 1 AU in our models, avoid migrating into the star. Our results provide support for the reduced migration rates adopted in recent planet population synthesis models.
The aim of this talk is to present the most recent advances in establishing plausible planetary system architectures determined by the gravitational tidal interactions between the planets and the disc in which they are embedded during the early epoch of planetary system formation. We concentrate on a very well defined and intensively studied process of the disc-planet interaction leading to the planet migration. We focus on the dynamics of the systems in which low-mass planets are present. Particular attention is devoted to investigation of the role of resonant configurations. Our studies, apart from being complementary to the fast progress occurring just now in observing the whole variety of planetary systems and uncovering their structure and origin, can also constitute a valuable contribution in support of the missions planned to enhance the number of detected multiple systems.
Many exoplanets in close-in orbits are observed to have relatively high eccentricities and large stellar obliquities. We explore the possibility that these result from planet-planet scattering by studying the dynamical outcomes from a large number of orbit integrations in systems with two and three gas-giant planets in close-in orbits (0.05 AU < a < 0.15 AU). We find that at these orbital separations, unstable systems starting with low eccentricities and mutual inclinations ($elesssim0.1$, $ilesssim0.1$) generally lead to planet-planet collisions in which the collision product is a planet on a low-eccentricity, low-inclination orbit. This result is inconsistent with the observations. We conclude that eccentricity and inclination excitation from planet-planet scattering must precede migration of planets into short-period orbits. This result constrains theories of planet migration: the semi-major axis must shrink by 1-2 orders of magnitude without damping the eccentricity and inclination.
Most planetary discoveries with the K2 and TESS missions are restricted to short periods because of the limited duration of observation. However, the re-observation of sky area allows for the detection of longer period planets. We describe new transits detected in six candidate planetary systems which were observed by multiple K2 mission campaigns. One of these systems is a multiplanet system with four candidate planets; we present new period constraints for two planets in this system. In the other five systems, only one transit is observed in each campaign, and we derive period constraints from this new data. The period distributions are highly multimodal resulting from missed potential transits in the gap between observations. Each peak in the distribution corresponds to transits at an integer harmonic of the two observed transits. We further detail a generalized procedure to constrain the period for planets with multiple observations with intervening gaps. Because long period photometrically discovered planets are rare, these systems are interesting targets for follow-up observations and confirmation. Specifically, all six systems are bright enough (V = 10.4-12.7) to be amenable to radial velocity follow-up. This work serves as a template for period constraints in a host of similar yet-to-be-discovered planets in long baseline, temporally gapped observations conducted by the TESS mission.