Do you want to publish a course? Click here

Experimental quantum secure direct communication with single photons

136   0   0.0 ( 0 )
 Added by Jianyong Hu
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantum communication holds promise for absolutely security in secret message transmission. Quantum secure direct communication is an important mode of the quantum communication in which secret messages are securely communicated over a quantum channel directly. It has become one of the hot research areas in the last decade, and offers both high security and instantaneousness in communication. It is also a basic cryptographic primitive for constructing other quantum communication tasks such as quantum authentication, quantum dialogue and so on. Here we report the first experimental demonstration of quantum secure direct communication with single photons. The experiment is based on the DL04 protocol, equipped with a simple frequency coding. It has the advantage of being robust against channel noise and loss. The experiment demonstrated explicitly the block data transmission technique, which is essential for quantum secure direct communication. In the experiment, a block transmission of 80 single photons was demonstrated over fiber, and it provides effectively 16 different values, which is equivalent to 4 bits of direct transmission in one block. The experiment has firmly demonstrated the feasibility of quantum secure direct communication in the presence of noise and loss.



rate research

Read More

Quantum communication provides an absolute security advantage, and it has been widely developed over the past 30 years. As an important branch of quantum communication, quantum secure direct communication (QSDC) promotes high security and instantaneousness in communication through directly transmitting messages over a quantum channel. The full implementation of a quantum protocol always requires the ability to control the transfer of a message effectively in the time domain; thus, it is essential to combine QSDC with quantum memory to accomplish the communication task. In this paper, we report the experimental demonstration of QSDC with state-of-the-art atomic quantum memory for the first time in principle. We used the polarization degrees of freedom of photons as the information carrier, and the fidelity of entanglement decoding was verified as approximately 90%. Our work completes a fundamental step toward practical QSDC and demonstrates a potential application for long-distance quantum communication in a quantum network.
100 - Nayana Das , Goutam Paul 2020
Recently, Yan et al. proposed a quantum secure direct communication (QSDC) protocol with authentication using single photons and Einstein-Podolsky-Rosen (EPR) pairs (Yan et al., CMC-Computers, Materials & Continua, 63(3), 2020). In this work, we show that the QSDC protocol is not secure against intercept-and-resend attack and impersonation attack. An eavesdropper can get the full secret message by applying these attacks. We propose a modification of this protocol, which defeats the above attacks along with all the familiar attacks.
In this paper, we propose a new theoretical scheme for quantum secure direct communication (QSDC) with user authentication. Different from the previous QSDC protocols, the present protocol uses only one orthogonal basis of single-qubit states to encode the secret message. Moreover, this is a one-time and one-way communication protocol, which uses qubits prepared in a randomly chosen arbitrary basis, to transmit the secret message. We discuss the security of the proposed protocol against some common attacks and show that no eaves-dropper can get any information from the quantum and classical channels. We have also studied the performance of this protocol under realistic device noise. We have executed the protocol in IBMQ Armonk device and proposed a repetition code based protection scheme that requires minimal overhead.
119 - Lan Zhou , Yu-Bo Sheng , 2019
Device-independent not only represents a relaxation of the security assumptions about the internal working of the quantum devices, but also can enhance the security of the quantum communication. In the paper, we put forward the first device-independent quantum secure direct communication (DI-QSDC) protocol, where no assumptions are made about the way the devices work or on what quantum system they operate. We show that in the absence of noise, the DI-QSDC protocol is absolutely secure and there is no limitation for the communication distance. However, under practical noisy quantum channel condition, the photon transmission loss and photon state decoherence would reduce the communication quality and threaten its absolute security. For solving the photon transmission loss and decoherence problems, we adopt noiseless linear amplification (NLA) protocol and entanglement purification protocol (EPP) to modify the DI-QSDC protocol. With the help of the NLA and EPP, we can guarantee the absolute security of the DI-QSDC and effectively improve its communication quality.
Quantum secure direct communication (QSDC) is the technology to transmit secret information directly through a quantum channel without neither key nor ciphertext. It provides us with a secure communication structure that is fundamentally different from the one that we use today. In this Letter, we report the first measurement-device-independent(MDI) QSDC protocol with sequences of entangled photon pairs and single photons. It eliminates security loopholes associated with the measurement device. In addition, the MDI technique doubles the communication distance compared to those without using the technique. We also give a protocol with linear optical Bell-basis measurement, where only two of the four Bell-basis states could be measured. When the number of qubit in a sequence reduces to 1, the MDI-QSDC protocol reduces to a deterministic MDI quantum key distribution protocol, which is also presented in the Letter.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا