No Arabic abstract
We present photometric and spectroscopic observations of the interacting transient SN 2009ip taken during the 2013 and 2014 observing seasons. We characterise the photometric evolution as a steady and smooth decline in all bands, with a decline rate that is slower than expected for a solely $^{56}$Co-powered supernova at late phases. No further outbursts or eruptions were seen over a two year period from 2012 December until 2014 December. SN 2009ip remains brighter than its historic minimum from pre-discovery images. Spectroscopically, SN 2009ip continues to be dominated by strong, narrow ($lesssim$2000 km~s$^{-1}$) emission lines of H, He, Ca, and Fe. While we make tenuous detections of [Fe~{sc ii}] $lambda$7155 and [O~{sc i}] $lambdalambda$6300,6364 lines at the end of 2013 June and the start of 2013 October respectively, we see no strong broad nebular emission lines that could point to a core-collapse origin. In general, the lines appear relatively symmetric, with the exception of our final spectrum in 2014 May, when we observe the appearance of a redshifted shoulder of emission at +550 km~s$^{-1}$. The lines are not blue-shifted, and we see no significant near- or mid-infrared excess. From the spectroscopic and photometric evolution of SN 2009ip until 820 days after the start of the 2012a event, we still see no conclusive evidence for core-collapse, although whether any such signs could be masked by ongoing interaction is unclear.
We present optical spectra of the nearby Type Ia supernova SN 2011fe at 100, 205, 311, 349, and 578 days post-maximum light, as well as an ultraviolet spectrum obtained with Hubble Space Telescope at 360 days post-maximum light. We compare these observations with synthetic spectra produced with the radiative transfer code PHOENIX. The day +100 spectrum can be well fit with models which neglect collisional and radiative data for forbidden lines. Curiously, including this data and recomputing the fit yields a quite similar spectrum, but with different combinations of lines forming some of the stronger features. At day +205 and later epochs, forbidden lines dominate much of the optical spectrum formation; however, our results indicate that recombination, not collisional excitation, is the most influential physical process driving spectrum formation at these late times. Consequently, our synthetic optical and UV spectra at all epochs presented here are formed almost exclusively through recombination-driven fluorescence. Furthermore, our models suggest that the ultraviolet spectrum even as late as day +360 is optically thick and consists of permitted lines from several iron-peak species. These results indicate that the transition to the nebular phase in Type Ia supernovae is complex and highly wavelength-dependent.
We report the results of a 3 year-long dedicated monitoring campaign of a restless Luminous Blue Variable (LBV) in NGC 7259. The object, named SN 2009ip, was observed photometrically and spectroscopically in the optical and near-infrared domains. We monitored a number of erupting episodes in the past few years, and increased the density of our observations during eruptive episodes. In this paper we present the full historical data set from 2009-2012 with multi-wavelength dense coverage of the two high luminosity events between August - September 2012. We construct bolometric light curves and measure the total luminosities of these eruptive or explosive events. We label them the 2012a event (lasting ~50 days) with a peak of 3x10^41 erg/s, and the 2012b event (14 day rise time, still ongoing) with a peak of 8x10^42 erg/s. The latter event reached an absolute R-band magnitude of about -18, comparable to that of a core-collapse supernova (SN). Our historical monitoring has detected high-velocity spectral features (~13000 km/s) in September 2011, one year before the current SN-like event. This implies that the detection of such high velocity outflows cannot, conclusively, point to a core-collapse SN origin. We suggest that the initial peak in the 2012a event was unlikely to be due to a faint core-collapse SN. We propose that the high intrinsic luminosity of the latest peak, the variability history of SN 2009ip, and the detection of broad spectral lines indicative of high-velocity ejecta are consistent with a pulsational pair-instability event, and that the star may have survived the last outburst. The question of the survival of the LBV progenitor star and its future fate remain open issues, only to be answered with future monitoring of this historically unique explosion.
We present observations of the peculiar supernova SN 1998bw, which was probably associated with GRB 980425. The photometric and spectroscopic evolution is monitored up to 500 days past explosion. We also present modeling based on spherically symmetric, massive progenitor models and very energetic explosions. The models allow line identification and clearly show the importance of mixing. From the late light curves we estimate that about 0.3-0.9 solar masses of ejected Nickel-56 is required to power the supernova.
Nuclear pasta, with nucleons arranged into tubes, sheets, or other complex shapes, is expected in core collapse supernovae (SNe) at just below nuclear density. We calculate the additional opacity from neutrino-pasta coherent scattering using molecular dynamics simulations. We approximately include this opacity in simulations of SNe. We find that pasta slows neutrino diffusion and greatly increases the neutrino signal at late times of 10 or more seconds after stellar core collapse. This signal, for a galactic SN, should be clearly visible in large detectors such as Super-Kamiokande.
Black holes display universal behavior near extremality. One such feature is the late-time blowup of derivatives of linearized perturbations across the horizon. For generic initial data, this instability is regulated by backreaction, and the final state is a near-extremal black hole. The aim of this paper is to study the late time behavior of such black holes analytically using the weakly broken conformal symmetry of their near-horizon region. In particular, gravitational backreaction is accounted for within the Jackiw-Teitelboim model for near-horizon, near-extremal dynamics coupled to bulk matter.