Do you want to publish a course? Click here

PAPER-64 Constraints on Reionization: The 21cm Power Spectrum at z=8.4

131   0   0.0 ( 0 )
 Added by Zaki Ali
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper, we report new limits on 21cm emission from cosmic reionization based on a 135-day observing campaign with a 64-element deployment of the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER) in South Africa. This work extends the work presented in Parsons et al. (2014) with more collecting area, a longer observing period, improved redundancy-based calibration, optimal fringe-rate filtering, and improved power-spectral analysis using optimal quadratic estimators. The result is a new $2sigma$ upper limit on $Delta^{2}(k)$ of (22.4 mK)$^2$ in the range $0.15 < k < 0.5h {rm Mpc}^{-1}$ at $z = 8.4$. This represents a three-fold improvement over the previous best upper limit. As we discuss in more depth in a forthcoming paper (Pober et al. 2015, in prep), this upper limit supports and extends previous evidence against extremely cold reionization scenarios. We conclude with a discussion of implications for future 21cm reionization experiments, including the newly funded Hydrogen Epoch of Reionization Array (HERA). $textbf{The limits presented in this paper have been retracted: The erratum can be found in Appendix A.}$



rate research

Read More

We present constraints on both the kinetic temperature of the intergalactic medium (IGM) at z=8.4, and on models for heating the IGM at high-redshift with X-ray emission from the first collapsed objects. These constraints are derived using a semi-analytic method to explore the new measurements of the 21 cm power spectrum from the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER), which were presented in a companion paper, Ali et al. (2015). Twenty-one cm power spectra with amplitudes of hundreds of mK^2 can be generically produced if the kinetic temperature of the IGM is significantly below the temperature of the Cosmic Microwave Background (CMB); as such, the new results from PAPER place lower limits on the IGM temperature at z=8.4. Allowing for the unknown ionization state of the IGM, our measurements find the IGM temperature to be above ~5 K for neutral fractions between 10% and 85%, above ~7 K for neutral fractions between 15% and 80%, or above ~10 K for neutral fractions between 30% and 70%. We also calculate the heating of the IGM that would be provided by the observed high redshift galaxy population, and find that for most models, these galaxies are sufficient to bring the IGM temperature above our lower limits. However, there are significant ranges of parameter space that could produce a signal ruled out by the PAPER measurements; models with a steep drop-off in the star formation rate density at high redshifts or with relatively low values for the X-ray to star formation rate efficiency of high redshift galaxies are generally disfavored. The PAPER measurements are consistent with (but do not constrain) a hydrogen spin temperature above the CMB temperature, a situation which we find to be generally predicted if galaxies fainter than the current detection limits of optical/NIR surveys are included in calculations of X-ray heating.
The epoch of reionization power spectrum is expected to evolve strongly with redshift, and it is this variation with cosmic history that will allow us to begin to place constraints on the physics of reionization. The primary obstacle to the measurement of the EoR power spectrum is bright foreground emission. We present an analysis of observations from the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER) telescope which place new limits on the HI power spectrum over the redshift range of $7.5<z<10.5$, extending previously published single redshift results to cover the full range accessible to the instrument. To suppress foregrounds, we use filtering techniques that take advantage of the large instrumental bandwidth to isolate and suppress foreground leakage into the interesting regions of $k$-space. Our 500 hour integration is the longest such yet recorded and demonstrates this method to a dynamic range of $10^4$. Power spectra at different points across the redshift range reveal the variable efficacy of the foreground isolation. Noise limited measurements of $Delta^2$ at $k=$0.2hMpc$^{-1}$ and z$=7.55$ reach as low as (48mK)$^2$ ($1sigma$). We demonstrate that the size of the error bars in our power spectrum measurement as generated by a bootstrap method is consistent with the fluctuations due to thermal noise. Relative to this thermal noise, most spectra exhibit an excess of power at a few sigma. The likely sources of this excess include residual foreground leakage, particularly at the highest redshift, and unflagged RFI. We conclude by discussing data reduction improvements that promise to remove much of this excess.
We discuss the 21cm power spectrum (PS) following the completion of reionization. In contrast to the reionization era, this PS is proportional to the PS of mass density fluctuations, with only a small modulation due to fluctuations in the ionization field on scales larger than the mean-free-path of ionizing photons. We derive the form of this modulation, and demonstrate that its effect on the 21cm PS will be smaller than 1% for physically plausible models of damped Ly-alpha systems. In contrast to the 21cm PS observed prior to reionization, in which HII regions dominate the ionization structure, the simplicity of the 21cm PS after reionization will enhance its utility as a cosmological probe by removing the need to separate the PS into physical and astrophysical components. As a demonstration, we consider the Alcock-Paczynski test and show that the next generation of low-frequency arrays could measure the angular distortion of the PS at the percent level for z~3-5.
The Epoch of Reionization (EoR) is an uncharted era in our Universes history during which the birth of the first stars and galaxies led to the ionization of neutral hydrogen in the intergalactic medium. There are many experiments investigating the EoR by tracing the 21cm line of neutral hydrogen. Because this signal is very faint and difficult to isolate, it is crucial to develop analysis techniques that maximize sensitivity and suppress contaminants in data. It is also imperative to understand the trade-offs between different analysis methods and their effects on power spectrum estimates. Specifically, with a statistical power spectrum detection in HERAs foreseeable future, it has become increasingly important to understand how certain analysis choices can lead to the loss of the EoR signal. In this paper, we focus on signal loss associated with power spectrum estimation. We describe the origin of this loss using both toy models and data taken by the 64-element configuration of the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER). In particular, we highlight how detailed investigations of signal loss have led to a revised, higher 21cm power spectrum upper limit from PAPER-64. Additionally, we summarize errors associated with power spectrum error estimation that were previously unaccounted for. We focus on a subset of PAPER-64 data in this paper; revised power spectrum limits from the PAPER experiment are presented in a forthcoming paper by Kolopanis et al. (in prep.) and supersede results from previously published PAPER analyses.
Using a combination of N-body simulations, semi-analytic models and radiative transfer calculations, we have estimated the theoretical cross power spectrum between galaxies and the 21cm emission from neutral hydrogen during the epoch of reionization. In accordance with previous studies, we find that the 21cm emission is initially correlated with halos on large scales (> 30 Mpc), anti-correlated on intermediate (~ 5 Mpc), and uncorrelated on small (< 3 Mpc) scales. This picture quickly changes as reionization proceeds and the two fields become anti-correlated on large scales. The normalization of the cross power spectrum can be used to set constraints on the average neutral fraction in the intergalactic medium and its shape can be a tool to study the topology of reionization. When we apply a drop-out technique to select galaxies and add to the 21cm signal the noise expected from the LOFAR telescope, we find that while the normalization of the cross power spectrum remains a useful tool for probing reionization, its shape becomes too noisy to be informative. On the other hand, for a Lyalpha Emitter (LAE) survey both the normalization and the shape of the cross power spectrum are suitable probes of reionization. A closer look at a specific planned LAE observing program using Subaru Hyper-Suprime Cam reveals concerns about the strength of the 21cm signal at the planned redshifts. If the ionized fraction at z ~ 7 is lower that the one estimated here, then using the cross power spectrum may be a useful exercise given that at higher redshifts and neutral fractions it is able to distinguish between two toy models with different topologies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا