Do you want to publish a course? Click here

Low-energy electric dipole response in 120Sn

280   0   0.0 ( 0 )
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

The electric dipole strength in 120Sn has been extracted from proton inelastic scattering experiments at E_p = 295 MeV and at forward angles including 0 degree. Below neutron threshoild it differs from the results of a 120Sn(gamma,gamma) experiment and peaks at an excitation energy of 8.3 MeV. The total strength corresponds to 2.3(2)% of the energy-weighted sum rule and is more than three times larger than what is observed with the (gamma,gamma) reaction. This implies a strong fragmentation of the E1 strength and/or small ground state branching ratios of the excited 1- states.



rate research

Read More

The electric dipole strength distribution in 120Sn between 5 and 22 MeV has been determined at RCNP Osaka from a polarization transfer analysis of proton inelastic scattering at E_0 = 295 MeV and forward angles including 0{deg}. Combined with photoabsorption data an electric dipole polarizability alpha_D(120Sn) = 8.93(36) fm^3 is extracted. The dipole polarizability as isovector observable par excellence carries direct information on the nuclear symmetry energy and its density dependence. The correlation of the new value with the well established alpha_D(208Pb) serves as a test of its prediction by nuclear energy density functionals (EDFs). Models based on modern Skyrme interactions describe the data fairly well while most calculations based on relativistic Hamiltonians cannot.
124 - A. Tamii 2011
A benchmark experiment on 208Pb shows that polarized proton inelastic scattering at very forward angles including 0{deg} is a powerful tool for high-resolution studies of electric dipole (E1) and spin magnetic dipole (M1) modes in nuclei over a broad excitation energy range to test up-to-date nuclear models. The extracted E1 polarizability leads to a neutron skin thickness r_skin = 0.156+0.025-0.021 fm in 208Pb derived within a mean-field model [Phys. Rev. C 81, 051303 (2010)], thereby constraining the symmetry energy and its density dependence, relevant to the description of neutron stars.
The dipole response of $^{76}_{34}$Se in the energy range 4 to 9 MeV has been analyzed using a $(vecgamma,{gamma})$ polarized photon scattering technique, performed at the High Intensity $gamma$-Ray Source facility, to complement previous work performed using unpolarized photons. The results of this work offer both an enhanced sensitivity scan of the dipole response and an unambiguous determination of the parities of the observed J=1 states. The dipole response is found to be dominated by $E1$ excitations, and can reasonably be attributed to a pygmy dipole resonance. Evidence is presented to suggest that a significant amount of directly unobserved excitation strength is present in the region, due to unobserved branching transitions in the decays of resonantly excited states. The dipole response of the region is underestimated when considering only ground state decay branches. We investigate the electric dipole response theoretically, performing calculations in a 3D cartesian-basis time-dependent Skyrme-Hartree-Fock framework.
148 - S. Bassauer 2020
Inelastic proton scattering experiments were performed at the Research Center for Nuclear Physics, Osaka, with a 295 MeV beam covering laboratory angles 0{deg}-6{deg} and excitation energies 6-22 MeV. Cross sections due to E1 and M1 excitations were extracted with a multipole decomposition analysis and then converted to reduced transition probabilities with the virtual photon method for E1 and the unit cross section method for M1 excitations, respectively. Including a theory-aided correction for the high excitation energy region not covered experimentally, the electric dipole polarizability was determined from the E1 strength distributions. Total photoabsorption cross sections derived from the E1 and M1 strength distributions show significant differences compared to those from previous ($gamma$,xn) experiments in the energy region of the isocvector giant dipole resonance (IVGDR). The widths of the IVGDR deduced from the present data with a Lorentz parameterization show an approximately constant value of about 4.5 MeV in contrast to the large variations between isotopes observed in previous work. The IVGDR centroid energies are in good correspondence to expectations from systematics of their mass dependence. Furthermore, a study of the dependence of the IVGDR energies on bulk matter properties is presented. The E1 strengths below neutron threshold show fair agreement with results from ($gamma$,$gamma$) experiments on 112,116,120,124Sn in the energy region between 6 and 7 MeV. At higher excitation energies large differences are observed pointing to a different nature of the excited states with small ground state branching ratios. The isovector spin-M1 strengths exhibit a broad distribution between 6 and 12 MeV in all studied nuclei.
113 - V. Derya , D. Savran , J. Endres 2014
Two different experimental approaches were combined to study the electric dipole strength in the doubly-magic nucleus 48Ca below the neutron threshold. Real-photon scattering experiments using bremsstrahlung up to 9.9 MeV and nearly mono-energetic linearly polarized photons with energies between 6.6 and 9.51 MeV provided strength distribution and parities, and an (alpha,alphagamma) experiment at E_{alpha}=136 MeV gave cross sections for an isoscalar probe. The unexpected difference observed in the dipole response is compared to calculations using the first-order random-phase approximation and points to an energy-dependent isospin character. A strong isoscalar state at 7.6 MeV was identified for the first time supporting a recent theoretical prediction.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا