Room Temperature Operation of a Buried Heterostructure Photonic Crystal Quantum Cascade Laser


Abstract in English

High power single mode quantum cascade lasers with a narrow far field are important for several applications including surgery or military countermeasure. Existing technologies suffer from drawbacks such as operation temperature and scalability. In this paper we introduce a fabrication approach that potentially solves simultaneously these remaining limitations. We demonstrate and characterize deep etched, buried photonic crystal quantum cascade lasers emitting around a wavelength of 8.5 {mu}m. The active region was dry etched before being regrown with semi-insulating Fe:InP. This fabrication strategy results in a refractive index contrast of 10% allowing good photonic mode control, and simultaneously provides good thermal extraction during operation. Single mode emission with narrow far field pattern and peak powers up to 0.88 W at 263 K were recorded from the facet of the photonic crystal laser, and lasing operation was maintained up to room temperature. The lasing modes emitted from square photonic crystal mesas with a side length of 550{mu}m, were identified as slow Bloch photonic crystal modes by means of three-dimensional photonic simulations and measurements.

Download