Do you want to publish a course? Click here

Internetwork chromospheric bright grains observed with IRIS

233   0   0.0 ( 0 )
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Interface Region Imaging Spectrograph (IRIS) reveals small-scale rapid brightenings in the form of bright grains all over coronal holes and the quiet sun. These bright grains are seen with the IRIS 1330 AA, 1400 AA and 2796 AA slit-jaw filters. We combine coordinated observations with IRIS and from the ground with the Swedish 1-m Solar Telescope (SST) which allows us to have chromospheric (Ca II 8542 AA, Ca II H 3968 AA, Halpha, and Mg II k 2796 AA), and transition region (C II 1334 AA, Si IV 1402) spectral imaging, and single-wavelength Stokes maps in Fe I 6302 AA at high spatial (0.33), temporal and spectral resolution. We conclude that the IRIS slit-jaw grains are the counterpart of so-called acoustic grains, i.e., resulting from chromospheric acoustic waves in a non-magnetic environment. We compare slit-jaw images with spectra from the IRIS spectrograph. We conclude that the grain intensity in the 2796 AA slit-jaw filter comes from both the Mg II k core and wings. The signal in the C II and Si IV lines is too weak to explain the presence of grains in the 1300 and 1400 AA slit-jaw images and we conclude that the grain signal in these passbands comes mostly from the continuum. Even though weak, the characteristic shock signatures of acoustic grains can often be detected in IRIS C II spectra. For some grains, spectral signature can be found in IRIS Si IV. This suggests that upward propagating acoustic waves sometimes reach all the way up to the transition region.



rate research

Read More

We report detection of oscillations in brightness temperature, size, and horizontal velocity of three small bright features in the chromosphere of a plage/enhanced-network region. The observations, which were taken with high temporal resolution (i.e., 2-sec cadence) with the Atacama Large Millimeter/submillimeter Array (ALMA) in Band 3 (centred at 3 mm; 100 GHz), exhibit three small-scale features with oscillatory behaviour with different, but overlapping, distributions of period on the order of, on average, $90 pm 22$ s, $110 pm 12$ s and $66 pm 23$ s, respectively. We find anti-correlations between perturbations in brightness temperature and size of the three features, which suggest the presence of fast sausage-mode waves in these small structures. In addition, the detection of transverse oscillations (although with a larger uncertainty) may suggest as well the presence of Alfvenic oscillations which are likely representative of kink waves. This work demonstrates the diagnostic potential of high-cadence observations with ALMA for detecting high-frequency magnetohydrodynamic waves in the solar chromosphere. Such waves can potentially channel a vast amount of energy into the outer atmosphere of the Sun.
97 - E. Tavabi , S. Koutchmy 2019
To study motions and oscillations in the solar chromosphere and at the transition region (TR) level we analyze some extreme Doppler shifts observed off-limb with the Interface Region Imaging Spectrograph (IRIS). Raster scans and slit-jaw imaging observations performed in the near-ultraviolet (NUV) channels were used. Large transverse oscillations are revealed by the far wings profiles after accurately removing the bulk average line profiles of each sequence. Different regions around the Sun are considered. Accordingly, the cool material of spicules is observed in Mg II lines rather dispersed up to coronal heights. In the quiet Sun and especially in a polar coronal hole, we study dynamical properties of the dispersed spicules-material off-limb using a high spectral, temporal and spatial resolutions IRIS observations. We suggest that numerous small-scale jet-like spicules show rapid twisting and swaying motions evidenced by the large distortion and dispersion of the line profiles, including impressive periodic Doppler shifts. Most of these events repeatedly appear in red- and blue-shifts above the limb throughout the whole interval of the observation datasets with an average swaying speed of order +/-35 kms-1 reaching a maximum value of 50 km s-1 in the polar coronal hole region, well above the 2.2 Mm heights. We identified for the 1st time waves with a short period of order of 100 sec and less and transverse amplitudes of order of +/- 20 to 30 km s-1 with the definite signature of Alfven waves. No correlation exists between brightness and Doppler shift variations; the phase speed of the wave is very large and cannot definitely be determined from the spectral features seen along the quasi-radial features. Even shorter periods waves are evidenced, although their contrast is greatly attenuated by the overlapping effects along the line of sight.
80 - T. Mitnyan , T. Szalai , A. Bodi 2020
Studying chromospheric activity of contact binaries is an important way of revealing the magnetic activity processes of these systems. An efficient but somewhat neglected method for that is to follow the changes of the H$alpha$ line profiles via optical spectroscopy. Our goal was to perform a comprehensive analysis based on the optical spectral signs of chromospheric activity on the largest sample of contact binaries to date. We collected echelle spectra on 12 bright contact binaries and derived new radial velocity curves from our observations. For quantifying the apparent chromospheric activity levels of the systems, we subtracted self-constructed synthetic spectra from the observed ones and measured the equivalent widths of the residual H$alpha$-profiles at each observed epoch. Our well-sampled data set allowed us to study the short-term variations of chromospheric activity levels as well as to search for correlations between them and some basic physical parameters of the systems. Fitting the radial velocity curves, we re-determined the mass ratios and systemic velocities of all observed objects. We found that chromospheric activity levels of the studied systems show various changes during the orbital revolution: we see either flat, or one-peaked, or two-peaked distributions of equivalent width vs. the orbital phase. The first case means that the activity level is probably constant, while the latter two cases suggest the presence of one or two active longitudes at the stellar surfaces. Our correlation diagrams show that mean chromospheric activity levels may be in connection with orbital periods, B$-$V color indices, inverse Rossby numbers, and temperature differences of the components. At the same time, no clear trend is visible with respect to mass ratios, inclinations and fill-out factors of the systems. A- and W-type contact binaries in our sample show similar distributions.
Optical and near-UV continuum emissions in flares contribute substantially to flare energy budget. Two mechanisms play an important role for continuum emission in flares: hydrogen recombination after sudden ionization at chromospheric layers and transportation of the energy radiatively from the chromosphere to lower layers in the atmosphere, the so called back-warming. The aim of the paper is to disentangle between these two mechanisms for the excess of Balmer continuum observed in a flare. Methods. We combine the observations of Balmer continuum obtained with IRIS (spectra and SJIs 2832 A) and hard X-ray (HXR) emission detected by FERMI Gamma Burst Monitor (GBM) during a mini flare. Calibrated Balmer continuum is compared to non-LTE radiative transfer flare models and radiated energy is estimated. Assuming thick target HXR emission, we calculate the energy of non-thermal electrons detected by FERMI GBM and compare it to the radiated energy. The favorable argument of a relationship between the Balmer continuum excess and the HXR emission is that there is a good time coincidence between both of them. In addition, the shape of the maximum brightness in the 2832 SJIs, which is mainly due to this Balmer continuum excess, is similar to the FERMI/GBM light curve. The electron-beam flux estimated from FERMI/GBM is consistent with the beam flux required in non-LTE radiative transfer models to get the excess of Balmer continuum emission observed in the IRIS spectra. The low energy input by non thermal electrons above 20 keV is sufficient to produce the enhancement of Balmer continuum emission. This could be explained by the topology of the reconnection site. The reconnection starts in a tiny bald patch region which is transformed dynamically in a X-point current sheet. The size of the interacting region would be under the spatial resolution of the instrument.
A comprehensive study of the physical parameters of active region fan loops is presented using the observations recorded with the Interface Region Imaging Spectrometer (IRIS), the EUV Imaging Spectrometer (EIS) on-board Hinode and the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) on-board the Solar Dynamics Observatory (SDO). The fan loops emerging from non-flaring AR~11899 (near the disk-center) on 19th November, 2013 are clearly discernible in AIA 171~{AA} images and those obtained in ion{Fe}{8} and ion{Si}{7} images using EIS. Our measurements of electron densities reveal that the footpoints of these loops are approximately at constant pressure with electron densities of $log,N_{e}=$ 10.1 cm$^{-3}$ at $log,[T/K]=5.15$ (ion{O}{4}), and $log,N_{e}=$ 8.9 cm$^{-3}$ at $log,[T/K]=6.15$ (ion{Si}{10}). The electron temperature diagnosed across the fan loops by means of EM-Loci suggest that at the footpoints, there are two temperature components at $log,[T/K]=4.95$ and 5.95, which are picked-up by IRIS lines and EIS lines respectively. At higher heights, the loops are nearly isothermal at $log,[T/K]=5.95$, that remained constant along the loop. The measurement of Doppler shift using IRIS lines suggests that the plasma at the footpoints of these loops is predominantly redshifted by 2-3~km~s$^{-1}$ in ion{C}{2}, 10-15~km~s$^{-1}$ in ion{Si}{4} and $~$15{--}20~km~s$^{-1}$ in ion{O}{4}, reflecting the increase in the speed of downflows with increasing temperature from $log,[T/K]=4.40$ to 5.15. These observations can be explained by low frequency nanoflares or impulsive heating, and provide further important constraints on the modeling of the dynamics of fan loops.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا