Infiniteness of $A_infty$-types of gauge groups


Abstract in English

Let $G$ be a compact connected Lie group and let $P$ be a principal $G$-bundle over $K$. The gauge group of $P$ is the topological group of automorphisms of $P$. For fixed $G$ and $K$, consider all principal $G$-bundles $P$ over $K$. It is proved by Crabb--Sutherland and the second author that the number of $A_n$-types of the gauge groups of $P$ is finite if $n<infty$ and $K$ is a finite complex. We show that the number of $A_infty$-types of the gauge groups of $P$ is infinite if $K$ is a sphere and there are infinitely many $P$.

Download