Do you want to publish a course? Click here

Weak Quasielastic Production of Hyperons and Threshold Production of Two Pions

124   0   0.0 ( 0 )
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

We have studied quasielastic charged current hyperon production induced by $bar u_mu$ on free nucleon and the nucleons bound inside the nucleus and the results are presented for several nuclear targets like $^{40}Ar$, $^{56}Fe$ and $^{208}Pb$. The hyperon-nucleon transition form factors are determined from neutrino-nucleon scattering and semileptonic decays of neutron and hyperons using SU(3) symmetry. The nuclear medium effects(NME) due to Fermi motion and final state interaction(FSI) effect due to hyperon-nucleon scattering have been taken into account. Also we have studied two pion production at threshold induced by neutrinos off nucleon targets. The contribution of nucleon, pion, and contact terms are calculated using Lagrangian given by nonlinear $sigma$ model. The contribution of the Roper resonance has also been taken into account. The numerical results for the cross sections are presented and compared with the experimental results from ANL and BNL.



rate research

Read More

We present the results for antineutrino induced quasielastic hyperon production from nucleon and nuclear targets cite{Alam:2014bya,Singh:2006xp}. The inputs are the nucleon-hyperon(N--Y) transition form factors determined from the analysis of neutrino-nucleon scattering and semileptonic decays of neutron and hyperons using SU(3) symmetry. The calculations for the nuclear targets are done in local density approximation. The nuclear medium effects(NME) like Fermi motion, Pauli blocking and final state interaction(FSI) effects due to hyperon-nucleon scattering have been taken into account. The hyperons giving rise to pions through weak decays also contribute to the weak pion production in addition to the $Delta$ excitation mechanism which dominates in the energy region of $<$ 0.7 GeV. We also present the results of longitudinal and perpendicular components of polarization of final hyperon cite{Akbar:2016awk}. These measurements in the future accelerator experiments with antineutrinos may give some information on axial vector and pseudoscalar form factors in the strangeness sector.
72 - A. Fatima , M. Sajjad Athar , 2021
The quasielastic production cross sections and polarizations of the hyperons induced by ${bar u}_mu$ on the free nucleon as well as from $^{40}$Ar in the sub-GeV energy region has been reviewed [1-5]. The effects of the second class currents in the axial vector sector with and without T-invariance as well as the effect of SU(3) symmetry breaking are also studied. We find that the cross sections and the various polarization components can effectively be used to determine the axial vector transition form factors in the strangeness sector and to test the validity of various symmetries of the weak hadronic currents like G-invariance, T-invariance and SU(3) symmetry. These hyperons decay dominantly into pions giving an additional contribution to the weak pion production induced by the antineutrinos. In the case of nuclear targets like $^{40}$Ar, this contribution is shown to be significant when compared with the pion production by the $Delta$ excitations in the energy range of $E_{bar{ u}_{mu}} le 0.7$ GeV [1]. This study could be useful for the DUNE experiment where argon will be used as the target material and the electronic imaging of particles is possible and the particle tracks can be identified.
We study the threshold production of two pions induced by neutrinos in nucleon targets. The contribution of nucleon, pion and contact terms are calculated using a chiral Lagrangian. The contribution of the Roper resonance, neglected in earlier studies, has also been taken into account. The numerical results for the cross sections are presented and compared with the available experimental data. It has been found that in the two pion channels with $pi^+pi^-$ and $pi^0pi^0$ in the final state, the contribution of the $N^*(1440)$ is quite important and could be used to determine the $N^*(1440)$ electroweak transition form factors if experimental data with better statistics become available in the future.
With the availability of high luminosity electron beam at the accelerators, there is now the possibility of studying weak quasielastic hyperon production off the proton, i.e. $e^-p to u_e Y(Y=Lambda,Sigma^0)$, which will enable the determination of the nucleon-hyperon vector and axial-vector transition form factors at high $ Q^2$ in the strangeness sector and provide test of the Cabibbo model, G-invariance, CVC, PCAC hypotheses and SU(3) symmetry. In this work, we have studied the total cross section, differential cross section as well as the longitudinal and perpendicular components of polarization of the final hyperons ($ Lambda$ and $Sigma^0$ produced in these reactions) and presented numerical results for these observables and their sensitivity to the transition form factors.
We study the threshold production of two pions induced by neutrinos in nucleon targets. The contribution of nucleon pole, pion and contact terms is calculated using a chiral Lagrangian. The contribution of the Roper resonance, neglected in earlier studies, has also been taken into account.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا