Do you want to publish a course? Click here

On the algebraic structure of rational discrete dynamical systems

185   0   0.0 ( 0 )
 Added by C. Viallet
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show how singularities shape the evolution of rational discrete dynamical systems. The stabilisation of the form of the iterates suggests a description providing among other things generalised Hirota form, exact evaluation of the algebraic entropy as well as remarkable polynomial factorisation properties. We illustrate the phenomenon explicitly with examples covering a wide range of models.

rate research

Read More

In many cases rational surfaces obtained by desingularization of birational dynamical systems are not relatively minimal. We propose a method to obtain coordinates of relatively minimal rational surfaces by using blowing down structure. We apply this method to the study of various integrable or linearizable mappings, including discre
378 - M. Petrera 2008
R. Hirota and K. Kimura discovered integrable discretizations of the Euler and the Lagrange tops, given by birational maps. Their method is a specialization to the integrable context of a general discretization scheme introduced by W. Kahan and applicable to any vector field with a quadratic dependence on phase variables. According to a proposal by T. Ratiu, discretizations of the Hirota-Kimura type can be considered for numerous integrable systems of classical mechanics. Due to a remarkable and not well understood mechanism, such discretizations seem to inherit the integrability for all algebraically completely integrable systems. We introduce an experimental method for a rigorous study of integrability of such discretizations. Application of this method to the Hirota-Kimura type discretization of the Clebsch system leads to the discovery of four functionally independent integrals of motion of this discrete time system, which turn out to be much more complicated than the integrals of the continuous time system. Further, we prove that every orbit of the discrete time Clebsch system lies in an intersection of four quadrics in the six-dimensional phase space. Analogous results hold for the Hirota-Kimura type discretizations for all commuting flows of the Clebsch system, as well as for the $so(4)$ Euler top.
A $textit{portrait}$ $mathcal{P}$ on $mathbb{P}^N$ is a pair of finite point sets $Ysubseteq{X}subsetmathbb{P}^N$, a map $Yto X$, and an assignment of weights to the points in $Y$. We construct a parameter space $operatorname{End}_d^N[mathcal{P}]$ whose points correspond to degree $d$ endomorphisms $f:mathbb{P}^Ntomathbb{P}^N$ such that $f:Yto{X}$ is as specified by a portrait $mathcal{P}$, and prove the existence of the GIT quotient moduli space $mathcal{M}_d^N[mathcal{P}]:=operatorname{End}_d^N//operatorname{SL}_{N+1}$ under the $operatorname{SL}_{N+1}$-action $(f,Y,X)^phi=bigl(phi^{-1}circ{f}circphi,phi^{-1}(Y),phi^{-1}(X)bigr)$ relative to an appropriately chosen line bundle. We also investigate the geometry of $mathcal{M}_d^N[mathcal{P}]$ and give two arithmetic applications.
Coisotropic deformations of algebraic varieties are defined as those for which an ideal of the deformed variety is a Poisson ideal. It is shown that coisotropic deformations of sets of intersection points of plane quadrics, cubics and space algebraic curves are governed, in particular, by the dKP, WDVV, dVN, d2DTL equations and other integrable hydrodynamical type systems. Particular attention is paid to the study of two- and three-dimensional deformations of elliptic curves. Problem of an appropriate choice of Poisson structure is discussed.
Let $K$ be a number field, let $S$ be a finite set of places of $K$, and let $R_S$ be the ring of $S$-integers of $K$. A $K$-morphism $f:mathbb{P}^1_Ktomathbb{P}^1_K$ has simple good reduction outside $S$ if it extends to an $R_S$-morphism $mathbb{P}^1_{R_S}tomathbb{P}^1_{R_S}$. A finite Galois invariant subset $Xsubsetmathbb{P}^1_K(bar{K})$ has good reduction outside $S$ if its closure in $mathbb{P}^1_{R_S}$ is etale over $R_S$. We study triples $(f,Y,X)$ with $X=Ycup f(Y)$. We prove that for a fixed $K$, $S$, and $d$, there are only finitely many $text{PGL}_2(R_S)$-equivalence classes of triples with $text{deg}(f)=d$ and $sum_{Pin Y}e_f(P)ge2d+1$ and $X$ having good reduction outside $S$. We consider refined questions in which the weighted directed graph structure on $f:Yto X$ is specified, and we give an exhaustive analysis for degree $2$ maps on $mathbb{P}^1$ when $Y=X$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا