Dimerized ground states in spin-S frustrated systems


Abstract in English

We study a family of frustrated anti-ferromagnetic spin-$S$ systems with a fully dimerized ground state. This state can be exactly obtained without the need to include any additional three-body interaction in the model. The simplest members of the family can be used as a building block to generate more complex geometries like spin tubes with a fully dimerized ground state. After present some numerical results about the phase diagram of these systems, we show that the ground state is robust against the inclusion of weak disorder in the couplings as well as several kinds of perturbations, allowing to study some other interesting models as a perturbative expansion of the exact one. A discussion on how to determine the dimerization region in terms of quantum information estimators is also presented. Finally, we explore the relation of these results with a the case of the a 4-leg spin tube which recently was proposed as the model for the description of the compound Cu$_2$Cl$_4$D$_8$C$_4$SO$_2$, delimiting the region of the parameter space where this model presents dimerization in its ground state.

Download