No Arabic abstract
Nanoscrolls are papyrus-like nanostructures which present unique properties due to their open ended morphology. These properties can be exploited in a plethora of technological applications, leading to the design of novel and interesting devices. During the past decade, significant advances in the synthesis and characterization of these structures have been made, but many challenges still remain. In this mini review we provide an overview on their history, experimental synthesis methods, basic properties and application perspectives.
Electrically-conducting diamond is a promising candidate for next-generation electronic, thermal and electrochemical applications. One of the major obstacles towards its exploitation is the strong degradation that some of its key physical properties - such as the carrier mobility and the superconducting transition temperature - undergo upon the introduction of disorder. This makes the two-dimensional hole gas induced at its surface by electric field-effect doping particularly interesting from both a fundamental and an applied perspective, since it strongly reduces the amount of extrinsic disorder with respect to the standard boron substitution. In this short review, we summarize the main results achieved so far in controlling the electric transport properties of different field-effect doped diamond surfaces via the ionic gating technique. We analyze how ionic gating can tune their conductivity, carrier density and mobility, and drive the different surfaces across the insulator-to-metal transition. We review their strongly orientation-dependent magnetotransport properties, with a particular focus on the gate-tunable spin-orbit coupling shown by the (100) surface. Finally, we discuss the possibility of field-induced superconductivity in the (110) and (111) surfaces as predicted by density functional theory calculations.
Convergent beam electron diffraction is routinely applied for studying deformation and local strain in thick crystals by matching the crystal structure to the observed intensity distributions. Recently, it has been demonstrated that CBED can be applied for imaging two-dimensional (2D) crystals where a direct reconstruction is possible and three-dimensional crystal deformations at a nanometre resolution can be retrieved. Here, we demonstrate that second-order effects allow for further information to be obtained regarding stacking arrangements between the crystals. Such effects are especially pronounced in samples consisting of multiple layers of 2D crystals. We show, using simulations and experiments, that twisted multilayer samples exhibit extra modulations of interference fringes in CBED patterns, i. e., a CBED moire. A simple and robust method for the evaluation of the composition and the number of layers from a single-shot CBED pattern is demonstrated.
Disorder inevitably exists in realistic samples, manifesting itself in various exotic properties for the topological states. In this paper, we summarize and briefly review work completed over the last few years, including our own, regarding recent developments in several topics about disorder effects in topological states. For weak disorder, the robustness of topological states is demonstrated, especially for both quantum spin Hall states with $Z_2=1$ and size induced nontrivial topological insulators with $Z_2=0$. For moderate disorder, by increasing the randomness of both the impurity distribution and the impurity induced potential, the topological insulator states can be created from normal metallic or insulating states. These phenomena and their mechanisms are summarized. For strong disorder, the disorder causes a metal-insulator transition. Due to their topological nature, the phase diagrams are much richer in topological state systems. Finally, the trends in these areas of disorder research are discussed.
Our world is composed of various materials with different structures, where spin structures have been playing a pivotal role in spintronic devices of the contemporary information technology. Apart from conventional collinear spin materials such as collinear ferromagnets and collinear antiferromagnetically coupled materials, noncollinear spintronic materials have emerged as hot spots of research attention owing to exotic physical phenomena. In this Review, we firstly introduce two types noncollinear spin structures, i.e., the chiral spin structure that yields real-space Berry phases and the coplanar noncollinear spin structure that could generate momentum-space Berry phases, and then move to relevant novel physical phenomena including topological Hall effect, anomalous Hall effect, multiferroic, Weyl fermions, spin-polarized current, and spin Hall effect without spin-orbit coupling in these noncollinear spin systems. Afterwards, we summarize and elaborate the electric-field control of the noncollinear spin structure and related physical effects, which could enable ultralow power spintronic devices in future. In the final outlook part, we emphasize the importance and possible routes for experimentally detecting the intriguing theoretically predicted spin-polarized current, verifying the spin Hall effect in the absence of spin-orbit coupling and exploring the anisotropic magnetoresistance and domain-wall-related magnetoresistance effects for noncollinear antiferromagnetic materials.
We review recent work on low-frequency Floquet engineering and its application to quantum materials driven by light, emphasizing van der Waals systems hosting Moire superlattices. These non-equilibrium systems combine the twist-angle sensitivity of the band structures with the flexibility of light drives. The frequency, amplitude, and polarization of light can be easily tuned in experimental setups, leading to platforms with on-demand properties. First, we review recent theoretical developments to derive effective Floquet Hamiltonians in different frequency regimes. We apply some of these theories to study twisted graphene and twisted transition metal dichalcogenide systems irradiated by light in free space and inside a waveguide. We study the changes induced in the quasienergies and steady-states, which can lead to topological transitions. Next, we consider van der Waals magnetic materials driven by low-frequency light pulses in resonance with the phonons. We discuss the phonon dynamics induced by the light and resulting magnetic transitions from a Floquet perspective. We finish by outlining new directions for Moire-Floquet engineering in the low-frequency regime and their relevance for technological applications.