Do you want to publish a course? Click here

SDSS J1138+3517: A quasar showing remarkably variable broad absorption lines

135   0   0.0 ( 0 )
 Added by Conor Wildy
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the highly variable SiIV and CIV broad absorption lines in SDSS J113831.4+351725.2 across four observational epochs. Using the SiIV doublet components, we find that the blue component is usually saturated and non-black, with the ratio of optical depths between the two components rarely being 2:1. This indicates that these absorbers do not fully cover the line-of-sight and thus a simple apparent optical depth model is insufficient when measuring the true opacity of the absorbers. Tests with inhomogeneous (power-law) and pure-partial coverage (step-function) models of the absorbing SiIV optical depth predict the most un-blended doublets component profiles equally well. However, when testing with Gaussian-fitted doublet components to all SiIV absorbers and averaging the total absorption predicted in each doublet, the upper limit of the power law index is mostly unconstrained. This leads us to favour pure partial coverage as a more accurate measure of the true optical depth than the inhomogeneous power law model. The pure-partial coverage model indicates no significant change in covering fraction across the epochs, with changes in the incident ionizing flux on the absorbing gas instead being favoured as the variability mechanism. This is supported by (a) the coordinated behaviour of the absorption troughs, (b) the behaviour of the continuum at the blue end of the spectrum and (c) the consistency of photoionization simulations of ionic column density dependencies on ionization parameter with the observed variations. Evidence from the simulations together with the CIV absorption profile indicates that the absorber lies outside the broad line region, though the precise distance and kinetic luminosity are not well constrained.

rate research

Read More

Broad absorption lines (BALs) in quasar spectra identify high velocity outflows that might exist in all quasars and could play a major role in feedback to galaxy evolution. The viability of BAL outflows as a feedback mechanism depends on their kinetic energies, as derived from the outflow velocities, column densities, and distances from the central quasar. We estimate these quantities for the quasar, Q1413+1143 (redshift $z_e = 2.56$), aided by the first detection of PV $lambdalambda$1118,1128 BAL variability in a quasar. In particular, PV absorption at velocities where the CIV trough does not reach zero intensity implies that the CIV BAL is saturated and the absorber only partially covers the background continuum source (with characteristic size <0.01 pc). With the assumption of solar abundances, we estimate that the total column density in the BAL outflow is log N_H > 22.3 (cm^-2). Variability in the PV and saturated CIV BALs strongly disfavors changes in the ionization as the cause of the BAL variability, but supports models with high-column density BAL clouds moving across our lines of sight. The observed variability time of 1.6 yr in the quasar rest frame indicates crossing speeds >750 km/s and a radial distance from the central black hole of <3.5 pc, if the crossing speeds are Keplerian. The total outflow mass is ~4100 M_solar, the kinetic energy ~4x10^54 erg, and the ratio of the outflow kinetic energy luminosity to the quasar bolometric luminosity is ~0.02 (at the minimum column density and maximum distance), which might be sufficient for important feedback to the quasars host galaxy.
We exploit the widely-separated images of the lensed quasar SDSS J1029+2623 ($z_{em}$=2.197, $theta =22^{primeprime}!!.5$) to observe its outflowing wind through two different sightlines. We present an analysis of three observations, including two with the Subaru telescope in 2010 February (Misawa et al. 2013) and 2014 April (Misawa et al. 2014), separated by 4 years, and one with the Very Large Telescope, separated from the second Subaru observation by $sim$2 months. We detect 66 narrow absorption lines (NALs), of which 24 are classified as intrinsic NALs that are physically associated with the quasar based on partial coverage analysis. The velocities of intrinsic NALs appear to cluster around values of $v_{ej}$ $sim$ 59,000, 43,000, and 29,000 km/s, which is reminiscent of filamentary structures obtained by numerical simulations. There are no common intrinsic NALs at the same redshift along the two sightlines, implying that the transverse size of the NAL absorbers should be smaller than the sightline distance between two lensed images. In addition to the NALs with large ejection velocities of $v_{ej}$ > 1,000 km/s, we also detect broader proximity absorption lines (PALs) at $z_{abs}$ $sim$ $z_{em}$. The PALs are likely to arise in outflowing gas at a distance of r $leq$ 620 pc from the central black hole with an electron density of $n_e$ $geq$ 8.7$times$10$^{3}$ cm$^{-3}$. These limits are based on the assumption that the variability of the lines is due to recombination. We discuss the implications of these results on the three-dimensional structure of the outflow.
We report a synchronized kinematic shift of CIV and SiIV broad absorption lines (BAL) in a high-ionization, radio-loud, and X-ray bright quasar SDSS-J092345+512710 (at $z_{em} sim 2.1627$). This quasar shows two broad absorption components (blue component at $v sim 14,000 km s^{-1}$, and red component at $v sim 4,000 km s^{-1}$ with respect to the quasars systemic redshift). The absorption profiles of CIV and SiIV BAL of the blue component show decrease in outflow velocity with an average deceleration rate of $-1.62_{-0.05}^{+0.04} cm s^{-2}$ and $-1.14^{+0.21}_{-0.22} cm s^{-2}$ over a rest-frame time-span of 4.15 yr. We do not see any acceleration-like signature in the red component. This is consistent with dramatic variabilities usually seen at high velocities. During our monitoring period the quasar has shown no strong continuum variability. We suggest the observed variability could be related to the time dependent changes in disk wind parameters like launching radius, initial flow velocity or mass outflow rate.
490 - Scott Tremaine 2014
The broad emission lines commonly seen in quasar spectra have velocity widths of a few per cent of the speed of light, so special- and general-relativistic effects have a significant influence on the line profile. We have determined the redshift of the broad H-beta line in the quasar rest frame (determined from the core component of the [OIII] line) for over 20,000 quasars from the Sloan Digital Sky Survey DR7 quasar catalog. The mean redshift as a function of line width is approximately consistent with the relativistic redshift that is expected if the line originates in a randomly oriented Keplerian disk that is obscured when the inclination of the disk to the line of sight exceeds ~30-45 degrees, consistent with simple AGN unification schemes. This result also implies that the net line-of-sight inflow/outflow velocities in the broad-line region are much less than the Keplerian velocity when averaged over a large sample of quasars with a given line width.
We have monitored 12 intrinsic narrow absorption lines (NALs) in five quasars and seven mini-broad absorption lines (mini-BALs) in six quasars for a period of 4-12 years (1-3.5 years in the quasar rest-frame). We present the observational data and the conclusions that follow immediately from them, as a prelude to a more detailed analysis. We found clear variability in the equivalent widths (EWs) of the mini-BAL systems but no easily discernible changes in their profiles. We did not detect any variability in the NAL systems nor in narrow components that are often located at the center of mini-BAL profiles. Variations in mini-BAL EWs are larger at longer time intervals, reminiscent of the trend seen in variable broad absorption lines. If we assume that the observed variations result from changes in the ionization state of the mini-BAL gas, we infer lower limits to the gas density $sim$ 10$^3$-10$^5$ cm$^{-3}$ and upper limits on the distance of the absorbers from the central engine of order a few kpc. Motivated by the observed variability properties, we suggest that mini-BALs can vary because of fluctuations of the ionizing continuum or changes in partial coverage while NALs can vary primarily because of changes in partial coverage.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا