Do you want to publish a course? Click here

A complete survey of texture zeros in general and symmetric quark mass matrices

125   0   0.0 ( 0 )
 Added by Patrick Otto Ludl
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

We perform a systematic analysis of all possible texture zeros in general and symmetric quark mass matrices. Using the values of masses and mixing parameters at the electroweak scale, we identify for both cases the maximally restrictive viable textures. Furthermore, we investigate the predictive power of these textures by applying a numerical predictivity measure recently defined by us. With this measure we find no predictive textures among the viable general quark mass matrices, while in the case of symmetric quark mass matrices most of the 15 maximally restrictive textures are predictive with respect to one or more light quark masses.



rate research

Read More

We consider the possibility of texture zeros in lepton mass matrices of the minimal left-right symmetric model (LRSM) where light neutrino mass arises from a combination of type I and type II seesaw mechanisms. Based on the allowed texture zeros in light neutrino mass matrix from neutrino and cosmology data, we make a list of all possible allowed and disallowed texture zeros in Dirac and heavy neutrino mass matrices which appear in type I and type II seesaw terms of LRSM. For the numerical analysis we consider those cases with maximum possible texture zeros in light neutrino mass matrix $M_{ u}$, Dirac neutrino mass matrix $M_D$, heavy neutrino mass matrix $M_{RR}$ while keeping the determinant of $M_{RR}$ non-vanishing, in order to use the standard type I seesaw formula. The possibility of maximum zeros reduces the free parameters of the model making it more predictive. We then compute the new physics contributions to rare decay processes like neutrinoless double beta decay, charged lepton flavour violation. We find that even for a conservative lower limit on a left-right symmetry scale corresponding to heavy charged gauge boson mass 4.5 TeV, in agreement with collider bounds, for right-handed neutrino masses above 1 GeV, the new physics contributions to these rare decay processes can saturate the corresponding experimental bound.
Several popular Ansatze of lepton mass matrices that contain texture zeros are confronted with current neutrino observational data. We perform a systematic $chi^2$-analysis in a wide class of schemes, considering arbitrary Hermitian charged lepton mass matrices and symmetric mass matrices for Majorana neutrinos or Hermitian mass matrices for Dirac neutrinos. Our study reveals that several patterns are still consistent with all the observations at 68.27% confidence level, while some others are disfavored or excluded by the experimental data. The well-known Frampton-Glashow-Marfatia two-zero textures, hybrid textures and parallel structures, among others, are considered.
We studied the phenomenological implications of texture zeros in the neutrino mass matrix of the minimal left-right symmetric model (LRSM). Since the possibility of maximum zeros reduces the maximum number of free parameters of the model making it more predictive, we considered only those cases with maximum possible texture zeros in light neutrino mass matrix $M_{ u}$, Dirac neutrino mass matrix $M_D$ and heavy right-handed (RH) neutrino mass matrix $M_{RR}$. We then computed the correlations among the different light neutrino parameters and then the new physics contributions to neutrinoless double beta decay (NDBD) for the different texture zero cases. We find that for RH neutrino masses above 1 GeV, the new physics contributions to NDBD can saturate the corresponding experimental bound.
We propose a model that all quark and lepton mass matrices have the same zero texture. Namely their (1,1), (1,3) and (3,1) components are zeros. The mass matrices are classified into two types I and II. Type I is consistent with the experimental data in quark sector. For lepton sector, if seesaw mechanism is not used, Type II allows a large $ u_mu - u_tau$ mixing angle. However, severe compatibility with all neutrino oscillation experiments forces us to use the seesaw mechanism. If we adopt the seesaw mechanism, it turns out that Type I instead of II can be consistent with experimental data in the lepton sector too.
184 - Jia-wen Deng , Uwe Guenther , 2012
Three ways of constructing a non-Hermitian matrix with possible all real eigenvalues are discussed. They are PT symmetry, pseudo-Hermiticity, and generalized PT symmetry. Parameter counting is provided for each class. All three classes of matrices have more real parameters than a Hermitian matrix with the same dimension. The generalized PT-symmetric matrices are most general among the three. All self-adjoint matrices process a generalized PT symmetry. For a given matrix, it can be both PT-symmetric and P-pseudo-Hermitian with respect to some P operators. The relation between corresponding P and P operators is established. The Jordan block structures of each class are discussed. Explicit examples in 2x2 are shown.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا