Do you want to publish a course? Click here

PSR B0329+54: Statistics of Substructure Discovered within the Scattering Disk on RadioAstron Baselines of up to 235,000 km

86   0   0.0 ( 0 )
 Added by Yuri Kovalev
 Publication date 2015
  fields Physics
and research's language is English
 Authors C.R. Gwinn




Ask ChatGPT about the research

We discovered fine-scale structure within the scattering disk of PSR B0329+54 in observations with the RadioAstron ground-space radio interferometer. Here, we describe this phenomenon, characterize it with averages and correlation functions, and interpret it as the result of decorrelation of the impulse-response function of interstellar scattering between the widely-separated antennas. This instrument included the 10-m Space Radio Telescope, the 110-m Green Bank Telescope, the 14x25-m Westerbork Synthesis Radio Telescope, and the 64-m Kalyazin Radio Telescope. The observations were performed at 324 MHz, on baselines of up to 235,000 km in November 2012 and January 2014. In the delay domain, on long baselines the interferometric visibility consists of many discrete spikes within a limited range of delays. On short baselines it consists of a sharp spike surrounded by lower spikes. The average envelope of correlations of the visibility function show two exponential scales, with characteristic delays of $tau_1=4.1pm 0.3 mu{rm s}$ and $tau_2=23pm 3 mu{rm s}$, indicating the presence of two scales of scattering in the interstellar medium. These two scales are present in the pulse-broadening function. The longer scale contains 0.38 times the scattered power of the shorter one. We suggest that the longer tail arises from highly-scattered paths, possibly from anisotropic scattering or from substructure at large angles.

rate research

Read More

60 - M. V. Popov 2016
We have resolved the scatter-broadened image of PSR B0329+54 and detected substructure within it. These results are not influenced by any extended structure of a source but instead are directly attributed to the interstellar medium. We obtained these results at 324 MHz with the ground-space interferometer RadioAstron which included the space radio telescope (SRT), ground-based Westerbork Synthesis Radio Telescope and 64-m Kalyazin Radio Telescope on baseline projections up to 330,000 km in 2013 November 22 and 2014 January 1 to 2. At short 15,000 to 35,000 km ground-space baseline projections the visibility amplitude decreases with baseline length providing a direct measurement of the size of the scattering disk of 4.8$pm$0.8 mas. At longer baselines no visibility detections from the scattering disk would be expected. However, significant detections were obtained with visibility amplitudes of 3 to 5% of the maximum scattered around a mean and approximately constant up to 330,000 km. These visibilities reflect substructure from scattering in the interstellar medium and offer a new probe of ionized interstellar material. The size of the diffraction spot near Earth is 17,000$pm$3,000 km. With the assumption of turbulent irregularities in the plasma of the interstellar medium, we estimate that the effective scattering screen is located 0.6$pm$0.1 of the distance from Earth toward the pulsar.
We present results from a multiwavelength study of the blazar PKS 1954-388 at radio, UV, X-ray, and gamma-ray energies. A RadioAstron observation at 1.66 GHz in June 2012 resulted in the detection of interferometric fringes on baselines of 6.2 Earth-diameters. This suggests a source frame brightness temperature of greater than 2x10^12 K, well in excess of both equipartition and inverse Compton limits and implying the existence of Doppler boosting in the core. An 8.4 GHz TANAMI VLBI image, made less than a month after the RadioAstron observations, is consistent with a previously reported superluminal motion for a jet component. Flux density monitoring with the Australia Telescope Compact Array confirms previous evidence for long-term variability that increases with observing frequency. A search for more rapid variability revealed no evidence for significant day-scale flux density variation. The ATCA light-curve reveals a strong radio flare beginning in late 2013 which peaks higher, and earlier, at higher frequencies. Comparison with the Fermi gamma-ray light-curve indicates this followed ~9 months after the start of a prolonged gamma-ray high-state -- a radio lag comparable to that seen in other blazars. The multiwavelength data are combined to derive a Spectral Energy Distribution, which is fitted by a one-zone synchrotron-self-Compton (SSC) model with the addition of external Compton (EC) emission.
157 - J. L. Chen , H. G. Wang , N. Wang 2011
The mode switching phenomenon of PSR B0329+54 is investigated based on the long-term monitoring from September 2003 to April 2009 made with the Urumqi 25m radio telescope at 1540 MHz. At that frequency, the change of relative intensity between the leading and trailing components is the predominant feature of mode switching. The intensity ratios between the leading and trailing components are measured for the individual profiles averaged over a few minutes. It is found that the ratios follow normal distributions, where the abnormal mode has a wider typical width than the normal mode, indicating that the abnormal mode is less stable than the normal mode. Our data show that 84.9% of the time for PSR B0329+54 was in the normal mode and 15.1% was in the abnormal mode. From the two passages of eight-day quasi-continuous observations in 2004, and supplemented by the daily data observed with 15 m telescope at 610 MHz at Jodrell Bank Observatory, the intrinsic distributions of mode timescales are constrained with the Bayesian inference method. It is found that the gamma distribution with the shape parameter slightly smaller than 1 is favored over the normal, lognormal and Pareto distributions. The optimal scale parameters of the gamma distribution is 31.5 minutes for the abnormal mode and 154 minutes for the normal mode. The shape parameters have very similar values, i.e. 0.75^{+0.22}_{-0.17} for the normal mode and 0.84^{+0.28}_{-0.22} for the abnormal mode, indicating the physical mechanisms in both modes may be the same. No long-term modulation of the relative intensity ratios was found for both the modes, suggesting that the mode switching was stable. The intrinsic timescale distributions, for the first time constrained for this pulsar, provide valuable information to understand the physics of mode switching.
We report on our efforts to test the Einstein Equivalence Principle by measuring the gravitational redshift with the VLBI spacecraft RadioAstron, in an eccentric orbit around Earth with geocentric distances as small as $sim$ 7,000 km and up to 350,000 km. The spacecraft and its ground stations are each equipped with stable hydrogen maser frequency standards, and measurements of the redshifted downlink carrier frequencies were obtained at both 8.4 and 15 GHz between 2012 and 2017. Over the course of the $sim$ 9 d orbit, the gravitational redshift between the spacecraft and the ground stations varies between $6.8 times 10^{-10}$ and $0.6 times 10^{-10}$. Since the clock offset between the masers is difficult to estimate independently of the gravitational redshift, only the variation of the gravitational redshift is considered for this analysis. We obtain a preliminary estimate of the fractional deviation of the gravitational redshift from prediction of $epsilon = -0.016 pm 0.003_{rm stat} pm 0.030_{rm syst}$ with the systematic uncertainty likely being dominated by unmodelled effects including the error in accounting for the non-relativistic Doppler shift. This result is consistent with zero within the uncertainties. For the first time, the gravitational redshift has been probed over such large distances in the vicinity of Earth. About three orders of magnitude more accurate estimates may be possible with RadioAstron using existing data from dedicated interleaved observations combining uplink and downlink modes of operation.
Quasi-continuous observations of PSR B03239+54 over 20 days using the Nanshan 25-m telescope at 1540 MHz have been used to study the effects of refractive scintillation on the pulsar flux density and diffractive scintillation properties. Dynamic spectra were obtained from datasets of 90 min duration and diffractive parameters derived from a two-dimensional auto-correlation analysis. Secondary spectra were also computed but these showed no significant evidence for arc structure. Cross correlations between variations in the derived parameters were much lower than predicted by thin screen models and in one case was of opposite sign to the prediction. Observed modulation indices were larger than predicted by thin screen models with a Kolmogorov fluctuation spectrum. Structure functions were computed for the flux density, diffractive timescale and decorrelation bandwidth. These indicated a refractive timescale of $8pm 2$ h, much shorter than predicted by the thin screen model. The measured structure-function slope of $0.4pm 0.2$ is also inconsistent with scattering by a single thin screen for which a slope of 2.0 is expected. All observations are consistent with scattering by an extended medium having a Kolmogorov fluctuation spectrum which is concentrated towards the pulsar. This interpretation is also consistent with recent observations of multiple diffuse scintillation arcs for this pulsar.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا