Do you want to publish a course? Click here

CW and pulsed electrically detected magnetic resonance spectroscopy at 263 GHz/12 T on operating amorphous silicon solar cells

127   0   0.0 ( 0 )
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Here we describe a new high frequency/high field continuous wave and pulsed electrically detected magnetic resonance (CW EDMR and pEDMR) setup, operating at 263 GHz and resonance fields between 0 and 12 T. Spin dependent transport in illuminated hydrogenated amorphous silicon p-i-n solar cells at 5 K and 90 K was studied by in operando 263 GHz CW and pEDMR alongside with complementary X-band CW EDMR. Benefiting from the superior resolution at 263 GHz, we were able to better resolve EDMR signals originating from spin dependent hopping and recombination processes. 5 K EDMR spectra were found to be dominated by conduction and valence band tale states involved in spin dependent hopping, with additional contributions from triplet exciton states. 90 K EDMR spectra could be assigned to spin pair recombination involving conduction band tail states and dangling bonds as dominating spin dependent transport process, with additional contributions from valence band tail and triplet exciton states.



rate research

Read More

The investigation of paramagnetic species (such as point defects, dopants, and impurities) in solid-state electronic devices is significant because of their effect on device performance. Conventionally, these species are detected and imaged using the electron spin resonance (ESR) technique. In many instances, ESR is not sensitive enough to deal with miniature devices having small numbers of paramagnetic species and high spatial heterogeneity. This limitation can in principle be overcome by employing a more sensitive method called electrically-detected magnetic resonance, which is based on measuring the effect of paramagnetic species on the electric current of the device while inducing electron spin-flip transitions. However, up until now, measurement of the current of the device could not reveal the spatial heterogeneity of its paramagnetic species. We provide here, for the first time, high resolution microimages of paramagnetic species in operating solar cells obtained through electrically-detected magnetic resonance. The method is based on unique microwave pulse sequences for excitation and detection of the electrical signal under a static magnetic field and powerful pulsed magnetic field gradients that spatially encode the electrical current of the sample. The approach developed here can be widely used in the nondestructive three-dimensional inspection and characterization of paramagnetic species in a variety of electronic devices.
We show that in pulsed electrically detected magnetic resonance (pEDMR) signal modulation in combination with a lock-in detection scheme can reduce the low-frequency noise level by one order of magnitude and in addition removes the microwave-induced non-resonant background. This is exemplarily demonstrated for spin-echo measurements in phosphorus-doped Silicon. The modulation of the signal is achieved by cycling the phase of the projection pulse used in pEDMR for the read-out of the spin state.
The authors demonstrate readout of electrically detected magnetic resonance at radio frequencies by means of an LCR tank circuit. Applied to a silicon field-effect transistor at milli-kelvin temperatures, this method shows a 25-fold increased signal-to-noise ratio of the conduction band electron spin resonance and a higher operational bandwidth of > 300 kHz compared to the kHz bandwidth of conventional readout techniques. This increase in temporal resolution provides a method for future direct observations of spin dynamics in the electrical device characteristics.
Historically, the design of hybrid solar photovoltaic thermal (PVT) systems has focused on cooling crystalline silicon (c-Si)-based photovoltaic (PV) devices to avoid temperature-related losses. This approach neglects the associated performance losses in the thermal system and leads to a decrease in the overall exergy of the system. Consequently, this paper explores the use of hydrogenated amorphous silicon (a-Si:H) as an absorber material for PVT in an effort to maintain higher and more favourable operating temperatures for the thermal system. Amorphous silicon not only has a smaller temperature coefficient than c-Si, but also can display improved PV performance over extended periods of higher temperatures by annealing out defect states from the Staebler-Wronski effect. In order to determine the potential improvements in a-Si:H PV performance associated with increased thicknesses of the i-layers made possible by higher operating temperatures, a-Si:H PV cells were tested under 1 sun illumination (AM1.5) at temperatures of 25oC (STC), 50oC (representative PV operating conditions), and 90 oC (representative PVT operating conditions). PV cells with an i-layer thicknesses of 420, 630 and 840 nm were evaluated at each temperature. Results show that operating a-Si:H-based PV at 90 oC, with thicker i-layers than the cells currently used in commercial production, provided a greater power output compared to the thinner cells operating at either PV or PVT operating temperatures. These results indicate that incorporating a-Si:H as the absorber material in a PVT system can improve the thermal performance, while simultaneously improving the electrical performance of a-Si:H-based PV.
Using a combination of quantum and classical computational approaches, we model the electronic structure in amorphous silicon in order gain understanding of the microscopic atomic configurations responsible for light induced degradation of solar cells. We demonstrate that regions of strained silicon bonds could be as important as dangling bonds for creating traps for charge carriers. Further, our results show that defects are preferentially formed when a region in the amorphous silicon contains a hole and a light-induced excitation. These results agree with the puzzling dependencies on temperature, time, and pressure observed experimentally.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا