Do you want to publish a course? Click here

Stellar activity as noise in exoplanet detection I. Methods and application to solar-like stars and activity cycles

84   0   0.0 ( 0 )
 Added by Heidi Korhonen
 Publication date 2015
  fields Physics
and research's language is English
 Authors H. Korhonen




Ask ChatGPT about the research

The detection of exoplanets using any method is prone to confusion due to the intrinsic variability of the host star. We investigate the effect of cool starspots on the detectability of the exoplanets around solar-like stars using the radial velocity method. For investigating this activity-caused jitter we calculate synthetic spectra using radiative transfer, known stellar atomic and molecular lines, different surface spot configurations, and an added planetary signal. Here, the methods are described in detail, tested and compared to previously published studies. The methods are also applied to investigate the activity jitter in old and young solar-like stars, and over a solar-like activity cycles. We find that the mean full jitter amplitude obtained from the spot surfaces mimicking the solar activity varies during the cycle approximately between 1 m/s and 9 m/s. With a realistic observing frequency a Neptune mass planet on a one year orbit can be reliably recovered. On the other hand, the recovery of an Earth mass planet on a similar orbit is not feasible with high significance. The methods developed in this study have a great potential for doing statistical studies of planet detectability, and also for investigating the effect of stellar activity on recovered planetary parameters.



rate research

Read More

We present the discovery of four new long-period planets within the HARPS high-precision sample: object{HD137388}b ($Msin{i}$ = 0.22 $M_J$), object{HD204941}b ($Msin{i}$ = 0.27 $M_J$), object{HD7199}b ($Msin{i}$ = 0.29 $M_J$), object{HD7449}b ($Msin{i}$ = 1.04 $M_J$). A long-period companion, probably a second planet, is also found orbiting HD7449. Planets around HD137388, HD204941, and HD7199 have rather low eccentricities (less than 0.4) relative to the 0.82 eccentricity of HD7449b. {All these planets were discovered even though their hosting stars have clear signs of activity. Solar-like magnetic cycles, characterized by long-term activity variations, can be seen for HD137388, HD204941 and HD7199, whereas the measurements of HD7449 reveal a short-term activity variation, most probably induced by magnetic features on the stellar surface. We confirm that magnetic cycles induce a long-term radial velocity variation and propose a method to reduce considerably the associated noise.} The procedure consists of fitting the activity index and applying the same solution to the radial velocities because a linear correlation between the activity index and the radial velocity is found. Tested on HD137388, HD204941, and HD7199, this correction reduces considerably the stellar noise induced by magnetic cycles and allows us to derive precisely the orbital parameters of planetary companions.
90 - Heidi Korhonen 2015
The current photometric datasets, that span decades, allow for studying long-term cycles on active stars. Complementary Ca H&K observations give information also on the cycles of normal solar-like stars, which have significantly smaller, and less easily detectable, spots. In the recent years, high precision space-based observations, for example from the Kepler satellite, have allowed also to study the sunspot-like spot sizes in other stars. Here I review what is known about the properties of the cyclic stellar activity in other stars than our Sun.
160 - Paul Robertson 2015
We present an in-depth analysis of stellar activity and its effects on radial velocity (RV) for the M2 dwarf GJ 176 based on spectra taken over 10 years from the High Resolution Spectrograph on the Hobby-Eberly Telescope. These data are supplemented with spectra from previous observations with the HIRES and HARPS spectrographs, and V- and R-band photometry taken over 6 years at the Dyer and Fairborn observatories. Previous studies of GJ 176 revealed a super-Earth exoplanet in an 8.8-day orbit. However, the velocities of this star are also known to be contaminated by activity, particularly at the 39-day stellar rotation period. We have examined the magnetic activity of GJ 176 using the sodium I D lines, which have been shown to be a sensitive activity tracer in cool stars. In addition to rotational modulation, we see evidence of a long-term trend in our Na I D index, which may be part of a long-period activity cycle. The sodium index is well correlated with our RVs, and we show that this activity trend drives a corresponding slope in RV. Interestingly, the rotation signal remains in phase in photometry, but not in the spectral activity indicators. We interpret this phenomenon as the result of one or more large spot complexes or active regions which dominate the photometric variability, while the spectral indices are driven by the overall magnetic activity across the stellar surface. In light of these results, we discuss the potential for correcting activity signals in the RVs of M dwarfs.
The evolution of the solar activity comprises, apart from the well-known 11-year cycle, various temporal scales ranging from months up to the secondary cycles known as mid-term oscillations. Its nature deserves a physical explanation. In this work, we consider the 5-to-6 year oscillations as derived both from sunspot and from solar magnetic dipole time series. Using the solar dynamo model, we deduced that these variations may be a manifestation of the dynamo nonlinearities and non-harmonic shape of the solar activity cycles. We conclude that the observed mid-term oscillations are related to the nonlinear saturation of the dynamo processes in the solar interior.
58 - C. Regulo , R. A. Garcia , 2016
Aims. We aim studying the use of cross-correlation techniques to infer the frequency shifts induced by changing magnetic fields in the p-mode frequencies and provide precise estimation of the error bars. Methods. This technique and the calculation of the associated errors is first tested and validated on the Sun where the p-mode magnetic behaviour is very well known. These validation tests are performed on 6000-day time series of Sun-as-a-star observations delivered by the SoHO spacecraft. Errors of the frequency shifts are quantified through Monte Carlo simulations. The same methodology is then applied to three solar-like oscillating stars: HD 49933, observed by CoRoT, as well as KIC 3733735 and KIC 7940546 observed by Kepler. Results. We first demonstrate the reliability of the error bars computed with the Monte Carlo simulations using the Sun. From the three analyzed stars we confirm the presence of a magnetic activity cycle with this methodology in HD 49933 and we unveil seismic signature of on going magnetic variations in KIC 3733735. Finally, the third star, KIC 7940546, seems to be in a quiet regime.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا