No Arabic abstract
This is the 12th article in the collection of reviews Exact results on N=2 supersymmetric gauge theories ed. J. Teschner. This article describes one way to understand an important part of the AGT-correspondence in terms of a triality between four-dimensional gauge theory, the two-dimensional theory of its vortices, and conformal field theory. This triality is related to, and inspired by known large $N$ dualities of the topological string. It leads to a proof of some cases of the AGT-correspondence, and most importantly, of a generalisation of this correspondence to certain five-dimensional gauge theories.
We propose a Nekrasov-type formula for the instanton partition functions of four-dimensional N=2 U(2) gauge theories coupled to (A_1,D_{2n}) Argyres-Douglas theories. This is carried out by extending the generalized AGT correspondence to the case of U(2) gauge group, which requires us to define irregular states of the direct sum of Virasoro and Heisenberg algebras. Using our formula, one can evaluate the contribution of the (A_1,D_{2n}) theory at each fixed point on the U(2) instanton moduli space. As an application, we evaluate the instanton partition function of the (A_3,A_3) theory to find it in a peculiar relation to that of SU(2) gauge theory with four fundamental flavors. From this relation, we read off how the S-duality group acts on the UV gauge coupling of the (A_3,A_3) theory.
We discuss the AdS/CFT correspondence in which space-time emerges from an interacting theory of D-branes and open strings. These ideas have a historical continuity with QCD which is an interacting theory of quarks and gluons. In particular we review the classic case of D3 branes and the non-conformal D1 brane system. We outline by some illustrative examples the calculations that are enabled in a strongly coupled gauge theory by correspondence with dynamical horizons in semi-classical gravity in one higher dimension. We also discuss implications of the gauge-fluid/gravity correspondence for the information paradox of black hole physics.
We apply duality transformation to the Abelian Higgs model in 3+1 dimensions in the presence of electrons coupled to the gauge field. The Higgs field is in the symmetry broken phase, when flux strings can form. Dualization brings in an antisymmetric tensor potential $B_{mu u}$,, which couples to the electrons through a nonlocal interaction which can be interpreted as a coupling to the spin current. It also couples to the string worldsheet and gives rise to a string Higgs mechanism via the condensation of flux strings. In the phase where the $B_{mu u}$ field is massless, the nonlocal interaction implies a linearly rising attractive force between the electrons.
We use gauge/gravity duality to study simultaneously the mass spectrum and the thermodynamics of a generic quasi-conformal gauge theory, specified by its beta function. The beta function of a quasi-conformal theory almost vanishes, and the coupling is almost constant between two widely separated energy scales. Depending on whether the gravity dual has a black hole or not, the mass spectrum is either a spectrum of quasinormal oscillations or a normal T=0 mass spectrum. The mass spectrum is quantitatively correlated with the thermal properties of the system. As the theory approaches conformality, the masses have to vanish. We show that in this limit, the masses calculated via gauge/gravity duality satisfy expected scaling properties.
The equivalence between Chern-Simons and Einstein-Hilbert actions in three dimensions established by A.~Achucarro and P.~K.~Townsend (1986) and E.~Witten (1988) is generalized to the off-shell case. The technique is also generalized to the Yang-Mills action in four dimensions displaying de Sitter gauge symmetry. It is shown that, in both cases, we can directly identify a gravity action while the gauge symmetry can generate spacetime local isometries as well as diffeomorphisms. The price we pay for working in an off-shell scenario is that specific geometric constraints are needed. These constraints can be identified with foliations of spacetime. The special case of spacelike leafs evolving in time is studied. Finally, the whole set up is analyzed under fiber bundle theory. In this analysis we show that a traditional gauge theory, where the gauge field does not influence in spacetime dynamics, can be (for specific cases) consistently mapped into a gravity theory in the first order formalism.